The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028641 Expansion of theta_3(q) * theta_3(q^19) + theta_2(q) * theta_2(q^19) in powers of q. 10
 1, 2, 0, 0, 2, 4, 0, 4, 0, 2, 0, 4, 0, 0, 0, 0, 2, 4, 0, 2, 4, 0, 0, 4, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 4, 0, 6, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 4, 0, 4, 2, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 2, 8, 0, 0, 4, 2, 0, 4, 0, 8, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 6, 4, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). The number of integer solutions (x, y) to x^2 + x*y + 5*y^2 = n, discriminant -19. - Ray Chandler, Jul 12 2014 REFERENCES R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 409. Eq. (19) LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Theta series of quadratic form with Gram matrix [ 2, 1; 1, 10 ]. Expansion of phi(q) * phi(q^19) + 4 * q^5 * psi(q^2)* psi(q^38) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 27 2007 Moebius transform is period 19 sequence [2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, 2, 2, -2, 0, ...]. - Michael Somos, Feb 27 2007 a(n) = 2*b(n) where b(n) is multiplicative with a(0) = 1,  b(19^e) = 1, b(p^e) = e + 1 if Kronecker(-19, p) = 1, b(p^e) = (1 + (-1)^e)/2 if Kronecker(-19, p) = -1. - Michael Somos, Feb 27 2007 a(n) = 2 * A035171(n) unless n = 0. - Jianing Song, Sep 06 2018 EXAMPLE G.f. = 1 + 2*x + 2*x^4 + 4*x^5 + 4*x^7 + 2*x^9 + 4*x^11 + 2*x^16 + 4*x^17 + 2*x^19 + ... MATHEMATICA a[ n_] := If[ n < 1, Boole[ n == 0], DivisorSum[ n, KroneckerSymbol[ -19, #] &] 2]; (* Michael Somos, Jun 14 2012 *) PROG (PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-19, d)) * 2)}; /* Michael Somos, Feb 27 2007 */ (PARI) {a(n) = if( n<1, n==0, qfrep([2, 1; 1, 10], n, 1)[n] * 2)}; /* Michael Somos, Feb 27 2007 */ CROSSREFS Cf. A035171. Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), this sequence (d=-19), A138811 (d=-43). Sequence in context: A244312 A158122 A348165 * A325190 A141416 A176787 Adjacent sequences:  A028638 A028639 A028640 * A028642 A028643 A028644 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 16:48 EDT 2022. Contains 354110 sequences. (Running on oeis4.)