OFFSET
0,2
COMMENTS
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 467, Entry 5(i).
LINKS
John Cannon, Table of n, a(n) for n = 0..5000
J. H. Conway and N. J. A. Sloane, Complex and integral laminated lattices, Trans. Amer. Math. Soc., 280 (1983), 463-490.
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references).
Michael Somos, Introduction to Ramanujan theta functions, 2019.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
G.f.: theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7).
G.f.: 1 + 2 * Sum_{k>0} Kronecker(-7, k) * x^k / (1 - x^k). - Michael Somos, Mar 17 2012
Expansion of phi(x) * phi(x^7) + 4 * x^2 * psi(x^2) * psi(x^14) = phi(-x) * phi(-x^7) + 4 * x * psi(x) * psi(x^7) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Mar 17 2012
Expansion of ((eta(q) * eta(q^7))^3 + 4 * (eta(q^2) * eta(q^14))^3) / (eta(q) * eta(q^2) * eta(q^7) * eta(q^14)) in powers of q. - Michael Somos, May 28 2005
Moebius transform is period 7 sequence [ 2, 2, -2, 2, -2, -2, 0, ...]. - Michael Somos, Oct 07 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 5 * v^2 + 4 * w^2 + 2 * u*w - 4 * u*v - 8 * v*w. - Michael Somos, Sep 20 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 + 2*u2^3*u3 + 18*u1*u3*u6^2 + 18*u2*u3^2*u6 + 6*u1*u2^2*u6 + 3*u1^2*u2*u3 - 3*u2*u3^3 - 18*u2*u3*u6^2 - 6*u1*u6^3 - 9*u1*u3^2*u6 - 6*u1*u2^2*u3 - 6*u1^2*u2*u6. - Michael Somos, Jun 03 2005
From Michael Somos, Mar 17 2012: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = 2 * A035182(n) unless n = 0. a(7*n + 5) = a(7*n + 6) = a(9*n + 3) = a(9*n + 6) = 0. a(2*n + 1) = 2 * A133827(n). a(9*n) = a(n). (End)
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(7^e) = 1, b(p^e) = e + 1 if p == 1, 2, 4 (mod 7), b(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7). - Michael Somos, Jun 10 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(7) = 2.3748208... . - Amiram Eldar, Dec 16 2023
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 6*x^4 + 2*x^7 + 8*x^8 + 2*x^9 + 4*x^11 + 4*x^14 + ...
Theta series of lattice with Gram matrix [2, 1; 1, 4] = 1 + 2*q^2 + 4*q^4 + 6*q^8 + 2*q^14 + 8*q^16 + 2*q^18 + 4*q^22 + 4*q^28 + 10*q^32 + 4*q^36 + 8*q^44 + 4*q^46 + 2*q^50 + 6*q^56 + 4*q^58 + 12*q^64 + 6*q^72 + ...
MATHEMATICA
f[d_] := KroneckerSymbol[-7, d]; a[n_] := 2*Total[f /@ Divisors[n]]; a[0]=1; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 08 2011, after Michael Somos *)
a[ n_] := If[ n < 1, Boole[n == 0], 2 Sum[ KroneckerSymbol[ -7, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 10 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -7, #] &]]; (* Michael Somos, Jun 10 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], Length @ FindInstance[ n == x^2 + x y + 2 y^2, {x, y}, Integers, 10^9]]; (* Michael Somos, Jun 10 2015 *)
PROG
(PARI) {a(n) = my(t2, t3); if( n<1, n==0, t2 = 2 * sum( n=1, (sqrtint( max(0, 4*n - 7)) + 1)\2, x^(n*n - n)); t3 = 1 + 2 * sum( n=1, sqrtint(n), x^(n*n)); polcoeff( t3 * subst(t3, x, x^7) + x^2 * t2 * subst(t2, x, x^7), n))};
(PARI) {a(n) = my(t); if( n<1, n==0, 2 * issquare(n) + 2 * sum( y=1, sqrtint(n*4\7), 2 * issquare(t = 4*n - 7*y^2) - (t==0)))}; /* Michael Somos, Sep 20 2004 */
(PARI) {a(n) = my(A, A1, A2); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A) * eta(x^7 + A); A2 = eta(x^2 + A) * eta(x^14 + A); polcoeff( (A1^3 + 4 * x * A2^3) / (A1 * A2), n))}; /* Michael Somos, May 28 2005 */
(PARI) {a(n) = if( n<1, n==0, 2 * qfrep( [ 2, 1; 1, 4], n, 1)[n])}; /* Michael Somos, Jun 03 2005 */
(PARI) {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -7, d)))}; /* Michael Somos, Oct 07 2005 */
(Magma) A := Basis( ModularForms( Gamma1(14), 1), 85); A[1] + 2*A[2] + 4*A[3] + 6*A[5]; /* Michael Somos, Jun 10 2015 */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved