login
A028609
Expansion of (theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z)).
15
1, 2, 0, 4, 2, 4, 0, 0, 0, 6, 0, 2, 4, 0, 0, 8, 2, 0, 0, 0, 4, 0, 0, 4, 0, 6, 0, 8, 0, 0, 0, 4, 0, 4, 0, 0, 6, 4, 0, 0, 0, 0, 0, 0, 2, 12, 0, 4, 4, 2, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 8, 0, 0, 0, 2, 0, 0, 4, 0, 8, 0, 4, 0, 0, 0, 12, 0, 0, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 8, 0, 0, 0, 4, 0, 6, 6, 0, 0
OFFSET
0,2
COMMENTS
Theta series of lattice with Gram matrix [2, 1; 1, 6].
Number of integer solutions (x, y) to x^2 + x*y + 3*y^2 = n. - Michael Somos, Sep 20 2004
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Henry McKean and Victor Moll, Elliptic Curves, Cambridge University Press, 1997, page 202. MR1471703 (98g:14032).
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of phi(x) * phi(x^11) = 4 * x^3 * psi(x^2) * psi(x^22) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Apr 21 2015
From Michael Somos, Jan 29 2007: (Start)
Moebius transform is period 11 sequence [ 2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 0, ...].
a(n) = 2 * b(n) and b(n) is multiplicative with b(11^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p == 2, 6, 7, 8, 10 (mod 11), b(p^e) = e + 1 if p == 1, 3, 4, 5, 9 (mod 11).
G.f.: 1 + 2 * Sum_{k>0} Kronecker( -11, k) * x^k / (1 - x^k). (End)
G.f. is a period 1 Fourier series which satisfies f(-1 / (11 t)) = 11^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 05 2007
Expansion of (F(x)^2 + 4 * F(x^2)^2 + 8 * F(x^4)^2) / F(x^2) in powers of x or expansion of (F(x)^2 + 2 * F(x^2)^2 + 2 * F(x^4)^2) / F(x^2) in powers of x^4 where F(x) = x^(1/2) * f(-x) * f(-x^11) and f() is a Ramanujan theta function. - Michael Somos, Mar 01 2010
a(n) = 2 * A035179(n) unless n=0. Convolution square is A028610.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(11) = 1.894451... . - Amiram Eldar, Dec 16 2023
EXAMPLE
G.f. = 1 + 2*x + 4*x^3 + 2*x^4 + 4*x^5 + 6*x^9 + 2*x^11 + 4*x^12 + 8*x^15 + ...
Theta series of lattice with Gram matrix [2, 1; 1, 6] = 1 + 2*q^2 + 4*q^6 + 2*q^8 + 4*q^10 + 6*q^18 + 2*q^22 + 4*q^24 + 8*q^30 + 2*q^32 + 4*q^40 + 4*q^46 + 6*q^50 + 8*q^54 + 4*q^62 + 4*q^66 + 6*q^72 + 4*q^74 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[ n == 0], DivisorSum[ n, KroneckerSymbol[ -11, #] &] 2]; (* Michael Somos, Jul 12 2014 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^11] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^11], {q, 0, n}]; (* Michael Somos, Jul 12 2014 *)
PROG
(PARI) {a(n) = my(t); if( n<1, n==0, 2 * issquare(n) + 2 * sum( y=1, sqrtint(n * 4\11), 2 * issquare( t=4*n - 11*y^2) - (t==0)))}; /* Michael Somos, Sep 20 2004 */
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 2 * x * Ser(qfrep( [ 2, 1; 1, 6], n, 1)), n))}; /* Michael Somos, Apr 21 2015 */
(PARI) {a(n) = if( n<1, n==0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -11, p) * X))[n] * 2)}; /* Michael Somos, Jun 05 2005 */
(PARI) {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -11, d)))}; /* Michael Somos, Jan 29 2007 */
(Magma) A := Basis( ModularForms( Gamma1(11), 1), 103); A[1] + 2*A[2] + 4*A[4] + 2*A[5]; /* Michael Somos, Jul 12 2014 */
CROSSREFS
Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), this sequence (d=-11), A028641 (d=-19), A138811 (d=-43).
Sequence in context: A066910 A094405 A155984 * A107490 A094572 A323905
KEYWORD
nonn,easy
STATUS
approved