login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028610
Expansion of (theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z))^2.
5
1, 4, 4, 8, 20, 16, 32, 16, 36, 28, 40, 4, 64, 40, 64, 56, 68, 40, 100, 48, 104, 80, 4, 56, 144, 68, 88, 104, 128, 72, 176, 88, 164, 8, 136, 112, 212, 96, 144, 128, 216, 88, 224, 96, 20, 184, 176, 128, 304, 132, 236
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Convolution square of A028609. - Michael Somos, Mar 22 2012
Expansion of (phi(x) * phi(x^11) = 4 * x^3 * psi(x^2) * psi(x^22))^2 in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Apr 21 2015
Convolution with A032442 is A128525. - Michael Somos, Apr 21 2015
EXAMPLE
G.f. = 1 + 4*x + 4*x^2 + 8*x^3 + 20*x^4 + 16*x^5 + 32*x^6 + 16*x^7 + ...
MAPLE
S:= series((JacobiTheta3(0, z)*JacobiTheta3(0, z^11)+JacobiTheta2(0, z)*JacobiTheta2(0, z^11))^2, z, 101):
seq(coeff(S, z, j), j=0..100); # Robert Israel, Jan 21 2018
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^11] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^11])^2, {q, 0, n}]; (* Michael Somos, Apr 21 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 + 2 * x * Ser(qfrep( [ 2, 1; 1, 6], n, 1)))^2, n))}; /* Michael Somos, Apr 21 2015 */
(Magma) A := Basis( ModularForms( Gamma1(11), 2), 51); A[1] + 4*A[2] + 4*A[3] + 8*A[4] + 20*A[5] + 16*A[6] + 32*A[7] + 16*A[8] + 36*A[9] + 28*A[10]; /* Michael Somos, Apr 21 2015 */
CROSSREFS
KEYWORD
nonn,look
AUTHOR
STATUS
approved