login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236511
a(n) = |{0 < k < n: p = 3*phi(k) + phi(n-k) - 1, p + 2, p + 6 and p + 8 are all prime}|, where phi(.) is Euler's totient function.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 0, 2, 0, 4, 4, 2, 1, 3, 4, 2, 2, 3, 0, 1, 3, 2, 3, 1, 4, 4, 3, 1
OFFSET
1,13
COMMENTS
Conjecture: a(n) > 0 for all n > 1075.
We have verified this for n up to 50000.
The above conjecture implies the well-known conjecture that there are infinitely many prime quadruplets (p, p + 2, p + 6, p + 8).
EXAMPLE
a(10) = 1 since 3*phi(3) + phi(7) - 1 = 6 + 6 - 1 = 11, 11 + 2 = 13, 11 + 6 = 17 and 11 + 8 = 19 are all prime.
a(57) = 1 since 3*phi(31) + phi(26) - 1 = 90 + 12 - 1 = 101, 101 + 2 = 103, 101 + 6 = 107 and 101 + 8 = 109 are all prime.
MATHEMATICA
p[n_]:=PrimeQ[n]&&PrimeQ[n+2]&&PrimeQ[n+6]&&PrimeQ[n+8]
f[n_, k_]:=3*EulerPhi[k]+EulerPhi[n-k]-1
a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 27 2014
STATUS
approved