login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A001222(A001414(n)).
3

%I #15 Mar 31 2021 12:04:11

%S 0,1,1,2,1,1,1,2,2,1,1,1,1,2,3,3,1,3,1,2,2,1,1,2,2,2,2,1,1,2,1,2,2,1,

%T 3,2,1,2,4,1,1,3,1,2,1,2,1,1,2,3,3,1,1,1,4,1,2,1,1,3,1,2,1,3,3,4,1,2,

%U 2,2,1,3,1,2,1,1,3,3,1,1,3,1,1,2,2,3,5,1,1,1,3,3,2,2,4,1,1,4,1

%N a(n) = A001222(A001414(n)).

%C a(n) is the number of prime divisors of the sum of prime divisors of n, counting multiplicity in both cases.

%H Robert Israel, <a href="/A342956/b342956.txt">Table of n, a(n) for n = 1..10000</a>

%e a(16) = 3 because A001414(16) = 2+2+2+2 = 8 and A001222(8) = A001222(2^3) = 3.

%p f:= proc(n) local t; numtheory:-bigomega(add(t[1]*t[2],t=ifactors(n)[2])) end proc:

%p map(f, [$1..100]);

%t Array[PrimeOmega[Plus@@Times@@@FactorInteger@#]&,100] (* _Giorgos Kalogeropoulos_, Mar 31 2021 *)

%o (Python)

%o from sympy import factorint

%o def A342956(n): return sum(factorint(sum(p*e for p, e in factorint(n).items())).values()) if n > 1 else 0 # _Chai Wah Wu_, Mar 31 2021

%Y Cf. A001222, A001414, A342957.

%K nonn

%O 1,4

%A _J. M. Bergot_ and _Robert Israel_, Mar 30 2021