Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jan 09 2025 00:22:17
%S 0,1,3,6,11,14,20,23,30,39,43,53,60,64,71,81,92,96,107,115,118,130,
%T 136,148,164,171,175,183,186,194,222,229,241,245,265,269,282,293,301,
%U 313,325,329,351,354,362,366,392,417,424,428,437,450,454,473,485,498,511
%N a(n) = Sum_{j=1..n-1} floor(prime(n)/prime(j)).
%C a(n) is the sum of the quotients in integer division of prime(n) by all smaller primes.
%H Robert Israel, <a href="/A342173/b342173.txt">Table of n, a(n) for n = 1..10000</a>
%H Lorenzo Sauras-Altuzarra, <a href="https://doi.org/10.26493/2590-9770.1473.ec5">Some properties of the factors of Fermat numbers</a>, Art Discrete Appl. Math. (2022).
%F a(n) = A308495(n) - 2. - _Hugo Pfoertner_, Mar 04 2021
%F a(n) = A013939(A006093(n)). - _Flávio V. Fernandes_, Jan 03 2025
%e a(4) = floor(7/2) + floor(7/3) + floor(7/5) = 6.
%p f:= proc(n) local t,i,s;
%p t:= ithprime(n);
%p add(floor(t/ ithprime(i)),i=1..n-1)
%p end proc:
%p map(f, [$1..100]);
%t Table[Sum[Floor[Prime[n]/Prime[j]],{j,n-1}],{n,64}] (* _Stefano Spezia_, Mar 04 2021 *)
%o (PARI) a(n) = sum(j=1, n-1, prime(n)\prime(j)); \\ _Michel Marcus_, Mar 04 2021
%Y Cf. A033955, A006093, A013939, A308495.
%K nonn,changed
%O 1,3
%A _J. M. Bergot_ and _Robert Israel_, Mar 03 2021