login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332095
Numbers m such that 0 <= m*tan(m) < 1, ordered by |m|.
4
0, -3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, -6167950454, -21053343141, -42106686282, -63160029423, -84213372564, -105266715705, -8958937768937, -17917875537874, -428224593349304, -856449186698608, -6134899525417045
OFFSET
1,2
COMMENTS
Equivalently, 0 together with integers m such that |tan(m)| < 1/m, multiplied by sign(tan(m)).
The term a(2) = 3 is up to 10^7 the only term m for which tan(m) < 0.
A092328 appears to be a subsequence. Does it contain all terms with tan(m) > 0?
Many terms are multiples of a smaller term: 44 = 22*2 and a(4..12) = {355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195} = 355*{1, 2, 3, ..., 9}.
Indeed, if |m*tan(m)| < 1/k^2 for some k = 1, 2, 3..., then (k*m)*tan(k*m) ~ k^2*m*tan(m) < 1. (E.g., for m = 355, m*tan(m) ~ 0.01.)
The "seeds" for which |m*tan(m)| is particularly small are numerators of convergents of continued fractions for Pi (A002485) (and/or Pi/2: A096456), e.g., a(3) = numerator(22/7), a(5) = numerator(355/113), ...
Other terms in the sequence include: -21053343141*{1, 2, 3, 4, 5}, -8958937768937*{1, 2}, -6134899525417045, -66627445592888887, 430010946591069243, -2646693125139304345*{1, 2, 3, 4, 5}, ...
The absolute values of nonzero terms are a subsequence of A337371. - R. J. Mathar, Sep 24 2020
Can someone find a counterexample for which |sin(m)| < 1/m and |m*tan(m)| > 1? - M. F. Hasler, Oct 09 2020
PROG
(PARI) is_A332095(n)={tan(n)*n < 1 && n*tan(n) >= 0}
for(n=0, oo, n*abs(tan(n))<1 && print1(sign(tan(n))*n", "))
/* Much faster: apply to numerators of convergents of Pi the function check(n) which prints all nonzero k*n in the sequence and returns the largest such k, largest in magnitude, possibly negative. N.B.: stops when (k+1)n is not in the sequence, so e.g., n = 11 (in convergents of Pi/2) does not give 22 and 44! */
print1(0); apply( {check(n)=for(i=1, oo, abs(i*n*tan(i*n))<1||return(sign(tan(n))*(i-1)); print1(", "sign(tan(n*i))*i*n))}, contfracpnqn(c=contfrac(Pi), #c)[1, ]) \\ M. F. Hasler, Oct 09 2020
CROSSREFS
Cf. A092328, A088306, A337371 (similar, with sin, a superset except for the initial term).
Sequence in context: A269799 A079039 A209987 * A337371 A041103 A225414
KEYWORD
sign
AUTHOR
M. F. Hasler, Sep 10 2020
STATUS
approved