login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306190
a(n) = p^2 - p - 1 where p = prime(n), the n-th prime.
3
1, 5, 19, 41, 109, 155, 271, 341, 505, 811, 929, 1331, 1639, 1805, 2161, 2755, 3421, 3659, 4421, 4969, 5255, 6161, 6805, 7831, 9311, 10099, 10505, 11341, 11771, 12655, 16001, 17029, 18631, 19181, 22051, 22649, 24491, 26405, 27721, 29755, 31861, 32579, 36289
OFFSET
1,2
COMMENTS
Terms are divisible by 5 iff p is of the form 10*m + 3 (A030431).
LINKS
FORMULA
a(n) = A036689(n) - 1.
a(n) = A036690(n) - A072055(n).
a(n) = A060800(n) - A089241(n).
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065488.
Product_{n>=2} (1 - 1/a(n)) = A065479. (End)
a(n) = A033879(A001248(n)). [Deficiency of squares of primes] - Antti Karttunen, Dec 13 2024
EXAMPLE
a(3) = 19 because 5^2 - 5 - 1 = 19.
MAPLE
map(p -> p^2-p-1, [seq(ithprime(i), i=1..100)]); # Robert Israel, Mar 11 2019
MATHEMATICA
Table[Prime[n]^2-Prime[n]-1, {n, 1, 100}] (* Jinyuan Wang, Feb 02 2019 *)
PROG
(PARI) a(n) = {p=prime(n); p^2-p-1; } \\ Jinyuan Wang, Feb 02 2019
CROSSREFS
Supersequence of A091568.
Subsequence of A028387 or A165900.
Second column of A378979.
A039914 is an essentially identical sequence.
Sequence in context: A155737 A100572 A119534 * A033622 A091568 A147307
KEYWORD
nonn
AUTHOR
Kritsada Moomuang, Jan 28 2019
STATUS
approved