OFFSET
0,3
COMMENTS
A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n. The only 0-times partition of n is the number n itself. - Gus Wiseman, Jan 27 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..410
Wikipedia, Partition (number theory)
FORMULA
a(n) = A323718(n,n).
EXAMPLE
From Gus Wiseman, Jan 27 2019: (Start)
The a(1) = 1 through a(3) = 10 partitions:
(1) ((2)) (((3)))
((11)) (((21)))
((1)(1)) (((111)))
(((2)(1)))
(((11)(1)))
(((2))((1)))
(((1)(1)(1)))
(((11))((1)))
(((1)(1))((1)))
(((1))((1))((1)))
(End)
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..25);
MATHEMATICA
ptnlevct[n_, k_]:=Switch[k, 0, 1, 1, PartitionsP[n], _, SeriesCoefficient[Product[1/(1-ptnlevct[m, k-1]*x^m), {m, n}], {x, 0, n}]];
Table[ptnlevct[n, n], {n, 0, 8}] (* Gus Wiseman, Jan 27 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 27 2019
STATUS
approved