login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327619
Number of parts in all n-times partitions of n.
4
0, 1, 5, 25, 219, 1596, 19844, 208377, 3394835, 46799236, 886886076, 15668835975, 366602236558, 7582277939549, 199035634246870, 4962275379320665, 150339081311823341, 4214812414260868163, 141823733752997729872, 4533014863242019822308, 169587948261109794026999
OFFSET
0,3
EXAMPLE
a(2) = 5: 2, 11, 1|1.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> b(n$3)[2]:
seq(a(n), n=0..21);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := b[n, n, n][[2]];
a /@ Range[0, 21] (* Jean-François Alcover, May 01 2020, after Maple *)
CROSSREFS
Main diagonal of A327618.
Sequence in context: A080632 A245166 A144575 * A005452 A061839 A143600
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 19 2019
STATUS
approved