login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327620
Decimal expansion of the Hausdorff dimension of the boundary of the tame twin-dragon curve.
1
1, 2, 1, 0, 7, 6, 0, 5, 3, 3, 2, 8, 8, 5, 2, 3, 3, 9, 5, 0, 2, 5, 8, 6, 7, 5, 0, 6, 4, 2, 9, 4, 6, 4, 3, 8, 8, 8, 6, 6, 8, 2, 0, 2, 3, 8, 7, 5, 5, 1, 3, 7, 8, 3, 9, 8, 6, 8, 4, 8, 8, 4, 3, 1, 1, 8, 7, 4, 9, 9, 6, 7, 7, 2, 4, 6, 1, 5, 3, 6, 7, 3, 4, 6, 6, 6, 5
OFFSET
1,2
COMMENTS
There are only six regular 2-reptiles in the plane, four of which have fractal boundaries. Listed below are the names of these four tiles, along with the numbers of the corresponding sequences that give the decimal expansion of the Hausdorff dimension of each dragon curve's boundary; the pictures of these four 2-reptile fractals are drawn in the Mathafou link.
. The Levy dragon: A191689
. The Heighway dragon: A272031
. The twin-dragon: A272031
. The tame twin-dragon: this sequence.
The Hausdorff dimension of the dragon curve's boundary is given by dim_H(Delta dragon) = 2 * log_2(lambda_max) where lambda_max is the largest eigenvalue of some characteristic polynomial associated to the dragon tile. The characteristic polynomial associated with this tame twin-dragon tile is x^3 - x - 2 (see [Ngai, Sirvent, Veerman, Wang] link, p. 15) whose only real root is (1+sqrt(78)/9)^(1/3) + (1-sqrt(78)/9)^(1/3) = 1.521379706804... Hence the formula.
REFERENCES
Jean-Paul Delahaye, Mathématiques pour le Plaisir, Belin Pour la Science, Paver des pavés, 2010, pp. 58-65.
LINKS
Sze-Man Ngai, Victor F. Sirvent, J. J. P. Veerman, and Yang Wang, On 2-Reptiles in the Plane, Portland State University, PDX Scholar, 1999.
Eric Weisstein's World of Mathematics, Rep-Tile.
FORMULA
Equals 2 * log_2((1+sqrt(78)/9)^(1/3) + (1-sqrt(78)/9)^(1/3)).
EXAMPLE
1.2107605332885233950258675064294643888668202387553...
MAPLE
evalf(2*log((1+sqrt(78)/9))^(1/3)+(1-sqrt(78)/9))^(1/3))/log(2), 50);
MATHEMATICA
RealDigits[2 * Log2[(1 + Sqrt[78]/9)^(1/3) + (1 - Sqrt[78]/9)^(1/3)], 10, 100][[1]] (* Amiram Eldar, Sep 19 2019 *)
PROG
(PARI) 2 * log((1+sqrt(78)/9)^(1/3)+(1-sqrt(78)/9)^(1/3))/log(2) \\ Michel Marcus, Sep 21 2019
CROSSREFS
Cf. A191689 (Levy dragon), A272031 (Heighway dragon and twindragon).
Sequence in context: A357585 A284797 A316135 * A325872 A021896 A188835
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Sep 19 2019
STATUS
approved