OFFSET
1,2
COMMENTS
The Lévy dragon was named after the French mathematician Paul Lévy (1886-1971). - Amiram Eldar, Apr 23 2021
LINKS
Scott Bailey, Theodore Kim and Robert S. Strichartz, Inside the Lévy dragon, Amer. Math. Monthly, Vol. 109, No. 8 (2002), pp. 689-703.
Paul Duvall and James Keesling, The dimension of the boundary of the Lévy dragon, Int. J. Math. and Math. Sci., Vol. 20, No. 4 (1997), pp. 627-632.
Paul Duvall and James Keesling, The Hausdorff dimension of the boundary of the Lévy dragon, in: M. Barge and K. Kuperberg (eds.), Geometry and Topology in Dynamics, AMS Contemporary Mathematics, Vol. 246 (1999), pp. 87-97; arXiv preprint, arXiv:math/9907145 [math.DS], 1999.
Larry Riddle, Lévy Dragon, Classic Iterated Function Systems.
Robert S. Strichartz and Yang Wang, Geometry of Self-Affine Tiles I, Indiana University Mathematics Journal, Vol. 48, No. 1 (1999), pp. 1-23; alternative link.
FORMULA
Equals 2*log_2(x), where x is the largest real root of x^9 - 3*x^8 + 3*x^7 - 3*x^6 + 2*x^5 + 4*x^4 - 8*x^3 + 8*x^2 - 16*x + 8 = 0. - Amiram Eldar, Apr 23 2021
EXAMPLE
1.934007182988290978...
MATHEMATICA
RealDigits[2*Log2[x /. FindRoot[x^9 - 3*x^8 + 3*x^7 - 3*x^6 + 2*x^5 + 4*x^4 - 8*x^3 + 8*x^2 - 16*x + 8, {x, 2}, WorkingPrecision -> 100]]][[1]] (* Amiram Eldar, Apr 23 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Jun 11 2011
EXTENSIONS
More terms from Amiram Eldar, Apr 23 2021
STATUS
approved