login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of fractal dimension of boundary of Lévy dragon.
2

%I #17 Apr 23 2021 05:17:17

%S 1,9,3,4,0,0,7,1,8,2,9,8,8,2,9,0,9,7,8,7,3,3,1,2,3,3,6,2,1,9,3,2,5,1,

%T 8,2,7,4,1,1,8,5,6,3,8,7,1,4,5,8,6,0,2,2,3,7,4,9,4,6,9,5,6,7,0,0,4,1,

%U 1,6,3,2,2,9,9,5,5,4,5,1,5,2,0,8,8,1,8

%N Decimal expansion of fractal dimension of boundary of Lévy dragon.

%C The Lévy dragon was named after the French mathematician Paul Lévy (1886-1971). - _Amiram Eldar_, Apr 23 2021

%H Scott Bailey, Theodore Kim and Robert S. Strichartz, <a href="http://www.jstor.org/stable/3072395">Inside the Lévy dragon</a>, Amer. Math. Monthly, Vol. 109, No. 8 (2002), pp. 689-703.

%H Paul Duvall and James Keesling, <a href="http://dx.doi.org/10.1155/S0161171297000872">The dimension of the boundary of the Lévy dragon</a>, Int. J. Math. and Math. Sci., Vol. 20, No. 4 (1997), pp. 627-632.

%H Paul Duvall and James Keesling, <a href="http://dx.doi.org/10.1090/conm/246">The Hausdorff dimension of the boundary of the Lévy dragon</a>, in: M. Barge and K. Kuperberg (eds.), Geometry and Topology in Dynamics, AMS Contemporary Mathematics, Vol. 246 (1999), pp. 87-97; <a href="https://arxiv.org/abs/math/9907145">arXiv preprint</a>, arXiv:math/9907145 [math.DS], 1999.

%H Larry Riddle, <a href="https://larryriddle.agnesscott.org/ifs/levy/levy.htm">Lévy Dragon</a>, Classic Iterated Function Systems.

%H Robert S. Strichartz and Yang Wang, <a href="https://www.jstor.org/stable/24900135">Geometry of Self-Affine Tiles I</a>, Indiana University Mathematics Journal, Vol. 48, No. 1 (1999), pp. 1-23; <a href="https://www.math.hkust.edu.hk/~yangwang/Reprints/boundaryI.pdf">alternative link</a>.

%F Equals 2*log_2(x), where x is the largest real root of x^9 - 3*x^8 + 3*x^7 - 3*x^6 + 2*x^5 + 4*x^4 - 8*x^3 + 8*x^2 - 16*x + 8 = 0. - _Amiram Eldar_, Apr 23 2021

%e 1.934007182988290978...

%t RealDigits[2*Log2[x /. FindRoot[x^9 - 3*x^8 + 3*x^7 - 3*x^6 + 2*x^5 + 4*x^4 - 8*x^3 + 8*x^2 - 16*x + 8, {x, 2}, WorkingPrecision -> 100]]][[1]] (* _Amiram Eldar_, Apr 23 2021 *)

%K nonn,cons

%O 1,2

%A _N. J. A. Sloane_, Jun 11 2011

%E More terms from _Amiram Eldar_, Apr 23 2021