login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139425
Smallest number k such that M(n)^2-k*M(n)+1 is prime with M(n)= Mersenne primes =A000668(n).
7
1, 1, 9, 3, 3, 25, 7, 21, 435, 241, 3, 153, 151, 493, 537, 2871, 1713, 4941, 4963, 307, 28413, 5035, 1615, 43525, 9973
OFFSET
1,3
COMMENTS
All primes certified using openpfgw_v12 from primeform group
EXAMPLE
3*3-1*3+1=7 prime 3=M(1)=2^2-1 so k(1)=1;
7*7-1*7+1=43 prime 7=M(2)=2^3-1 so k(2)=1;
31*31-9*31+1=683 prime 31=M(3)=2^5-1 so k(3)=9.
MATHEMATICA
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609};
Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1;
While[! PrimeQ[m2 - k*m + 1], k++]; k, {n, 15}] (* Robert Price, Apr 17 2019 *)
KEYWORD
hard,more,nonn
AUTHOR
Pierre CAMI, Apr 21 2008
STATUS
approved