login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest number k such that M(n)^2-k*M(n)+1 is prime with M(n)= Mersenne primes =A000668(n).
7

%I #8 Apr 17 2019 19:06:06

%S 1,1,9,3,3,25,7,21,435,241,3,153,151,493,537,2871,1713,4941,4963,307,

%T 28413,5035,1615,43525,9973

%N Smallest number k such that M(n)^2-k*M(n)+1 is prime with M(n)= Mersenne primes =A000668(n).

%C All primes certified using openpfgw_v12 from primeform group

%e 3*3-1*3+1=7 prime 3=M(1)=2^2-1 so k(1)=1;

%e 7*7-1*7+1=43 prime 7=M(2)=2^3-1 so k(2)=1;

%e 31*31-9*31+1=683 prime 31=M(3)=2^5-1 so k(3)=9.

%t A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609};

%t Table[m = 2^A000043[[n]] - 1; m2 = m^2; k = 1;

%t While[! PrimeQ[m2 - k*m + 1], k++]; k, {n, 15}] (* _Robert Price_, Apr 17 2019 *)

%Y Cf. A000668, A139424, A139426, A139427, A139428, A139429, A139430, A139421.

%K hard,more,nonn

%O 1,3

%A _Pierre CAMI_, Apr 21 2008