login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327622
Number A(n,k) of parts in all k-times partitions of n into distinct parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
7
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 5, 3, 1, 0, 1, 1, 7, 8, 5, 1, 0, 1, 1, 9, 16, 15, 8, 1, 0, 1, 1, 11, 27, 35, 28, 10, 1, 0, 1, 1, 13, 41, 69, 73, 49, 13, 1, 0, 1, 1, 15, 58, 121, 160, 170, 86, 18, 1, 0, 1, 1, 17, 78, 195, 311, 460, 357, 156, 25, 1
OFFSET
0,14
COMMENTS
Row n is binomial transform of the n-th row of triangle A327632.
FORMULA
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327632(n,i).
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 3, 8, 16, 27, 41, 58, 78, 101, ...
1, 5, 15, 35, 69, 121, 195, 295, 425, ...
1, 8, 28, 73, 160, 311, 553, 918, 1443, ...
1, 10, 49, 170, 460, 1047, 2106, 3865, 6611, ...
1, 13, 86, 357, 1119, 2893, 6507, 13182, 24625, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2<n, 0, b(n, i-1, k)+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
A:= (n, k)-> b(n$2, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n==0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i(i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
A[n_, k_] := b[n, n, k][[2]];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2020, after Maple *)
CROSSREFS
Columns k=0-3 give: A057427, A015723, A327605, A327628.
Rows n=0,(1+2),3-5 give: A000004, A000012, A005408, A104249, A005894.
Main diagonal gives: A327623.
Sequence in context: A117417 A231345 A271344 * A183134 A328747 A346061
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 19 2019
STATUS
approved