Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Dec 09 2020 11:05:12
%S 0,0,1,0,1,1,0,1,1,1,0,1,1,3,1,0,1,1,5,3,1,0,1,1,7,8,5,1,0,1,1,9,16,
%T 15,8,1,0,1,1,11,27,35,28,10,1,0,1,1,13,41,69,73,49,13,1,0,1,1,15,58,
%U 121,160,170,86,18,1,0,1,1,17,78,195,311,460,357,156,25,1
%N Number A(n,k) of parts in all k-times partitions of n into distinct parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C Row n is binomial transform of the n-th row of triangle A327632.
%H Alois P. Heinz, <a href="/A327622/b327622.txt">Antidiagonals n = 0..200, flattened</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%F A(n,k) = Sum_{i=0..k} binomial(k,i) * A327632(n,i).
%e Square array A(n,k) begins:
%e 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 3, 5, 7, 9, 11, 13, 15, 17, ...
%e 1, 3, 8, 16, 27, 41, 58, 78, 101, ...
%e 1, 5, 15, 35, 69, 121, 195, 295, 425, ...
%e 1, 8, 28, 73, 160, 311, 553, 918, 1443, ...
%e 1, 10, 49, 170, 460, 1047, 2106, 3865, 6611, ...
%e 1, 13, 86, 357, 1119, 2893, 6507, 13182, 24625, ...
%p b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
%p `if`(k=0, [1, 1], `if`(i*(i+1)/2<n, 0, b(n, i-1, k)+
%p (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
%p b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
%p end:
%p A:= (n, k)-> b(n$2, k)[2]:
%p seq(seq(A(n, d-n), n=0..d), d=0..14);
%t b[n_, i_, k_] := b[n, i, k] = With[{}, If[n==0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i(i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
%t A[n_, k_] := b[n, n, k][[2]];
%t Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Jun 03 2020, after Maple *)
%Y Columns k=0-3 give: A057427, A015723, A327605, A327628.
%Y Rows n=0,(1+2),3-5 give: A000004, A000012, A005408, A104249, A005894.
%Y Main diagonal gives: A327623.
%Y Cf. A327618, A327632.
%K nonn,tabl
%O 0,14
%A _Alois P. Heinz_, Sep 19 2019