login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328747 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k. 8
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 7, 1, 0, 1, 1, 15, 31, 19, 1, 0, 1, 1, 31, 115, 175, 51, 1, 0, 1, 1, 63, 391, 1255, 991, 141, 1, 0, 1, 1, 127, 1267, 8071, 13671, 5881, 393, 1, 0, 1, 1, 255, 3991, 49399, 161671, 160461, 35617, 1107, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0.

For fixed k > 0, T(n,k) ~ (2^k - 1)^(n + (k-1)/2) / (2^((k-1)^2/2) * sqrt(k) * (Pi*n)^((k-1)/2)). - Vaclav Kotesovec, Oct 28 2019

LINKS

Seiichi Manyama, Antidiagonals n = 0..100, flattened

EXAMPLE

Square array begins:

   1, 1,  1,   1,     1,      1, ...

   1, 1,  1,   1,     1,      1, ...

   0, 1,  3,   7,    15,     31, ...

   0, 1,  7,  31,   115,    391, ...

   0, 1, 19, 175,  1255,   8071, ...

   0, 1, 51, 991, 13671, 161671, ...

CROSSREFS

Columns k=0..5 give A019590(n+1), A000012, A002426, A172634, A328725, A328750.

Main diagonal gives A328811.

T(n,n+1) gives A328813.

Cf. A309010, A328748, A328807.

Sequence in context: A271344 A327622 A183134 * A053382 A031253 A291624

Adjacent sequences:  A328744 A328745 A328746 * A328748 A328749 A328750

KEYWORD

nonn,tabl

AUTHOR

Seiichi Manyama, Oct 27 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 16:23 EDT 2021. Contains 343135 sequences. (Running on oeis4.)