The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328747 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k. 8
 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 7, 1, 0, 1, 1, 15, 31, 19, 1, 0, 1, 1, 31, 115, 175, 51, 1, 0, 1, 1, 63, 391, 1255, 991, 141, 1, 0, 1, 1, 127, 1267, 8071, 13671, 5881, 393, 1, 0, 1, 1, 255, 3991, 49399, 161671, 160461, 35617, 1107, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0. For fixed k > 0, T(n,k) ~ (2^k - 1)^(n + (k-1)/2) / (2^((k-1)^2/2) * sqrt(k) * (Pi*n)^((k-1)/2)). - Vaclav Kotesovec, Oct 28 2019 LINKS Seiichi Manyama, Antidiagonals n = 0..100, flattened EXAMPLE Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 0, 1, 3, 7, 15, 31, ... 0, 1, 7, 31, 115, 391, ... 0, 1, 19, 175, 1255, 8071, ... 0, 1, 51, 991, 13671, 161671, ... MATHEMATICA T[n_, k_] := Sum[(-1)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *) CROSSREFS Columns k=0..5 give A019590(n+1), A000012, A002426, A172634, A328725, A328750. Main diagonal gives A328811. T(n,n+1) gives A328813. Cf. A309010, A328748, A328807. Sequence in context: A271344 A327622 A183134 * A346061 A053382 A031253 Adjacent sequences: A328744 A328745 A328746 * A328748 A328749 A328750 KEYWORD nonn,tabl AUTHOR Seiichi Manyama, Oct 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 02:04 EDT 2024. Contains 375171 sequences. (Running on oeis4.)