The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328744 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^q(k), where q(k) = number of partitions of k into distinct parts (A000009). 1
 1, 1, 2, 2, 3, 6, 5, 8, 9, 13, 12, 23, 18, 27, 33, 39, 38, 63, 54, 80, 86, 101, 104, 161, 145, 183, 208, 254, 256, 361, 340, 435, 472, 550, 600, 776, 760, 918, 1018, 1221, 1260, 1576, 1610, 1929, 2129, 2408, 2590, 3172, 3274, 3833, 4173, 4783, 5120, 6054, 6414, 7414, 8025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Number of ways to write n as an orderless product of orderless sums with distinct factors and each sum composed of distinct parts. Compare A318949. LINKS Andrew Howroyd, Table of n, a(n) for n = 1..1000 EXAMPLE The a(4) = 2 ways: (4), (3+1). The a(6) = 6 ways: (6), (4+2), (5+1), (3+2+1), (2)*(3), (2)*(2+1). PROG (PARI) MultWeighT(u)={my(n=#u, v=vector(n, k, k==1)); for(k=2, n, if(u[k], my(m=logint(n, k), p=(1 + x + O(x*x^m))^u[k], w=vector(n)); for(i=0, m, w[k^i]=polcoef(p, i)); v=dirmul(v, w))); v} seq(n)={MultWeighT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1))} \\ Andrew Howroyd, Oct 27 2019 CROSSREFS Cf. A000009, A045778, A050368, A318949. Sequence in context: A137757 A210751 A279791 * A132886 A119272 A308483 Adjacent sequences:  A328741 A328742 A328743 * A328745 A328746 A328747 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Oct 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 10:49 EDT 2021. Contains 342977 sequences. (Running on oeis4.)