OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^p(k), where p(k) = number of partitions of k (A000041). - Ilya Gutkovskiy, Oct 26 2019
EXAMPLE
The a(6) = 17 ways:
(6) (2)*(3)
(3+3) (2)*(2+1)
(4+2) (2)*(1+1+1)
(5+1) (1+1)*(3)
(2+2+2) (1+1)*(2+1)
(3+2+1) (1+1)*(1+1+1)
(4+1+1)
(2+2+1+1)
(3+1+1+1)
(2+1+1+1+1)
(1+1+1+1+1+1)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#1, d]&)/@Select[facs[n/d], Min@@#1>=d&], {d, Rest[Divisors[n]]}]];
prodsums[n_]:=Union[Sort/@Join@@Table[Tuples[IntegerPartitions/@fac], {fac, facs[n]}]];
Table[Length[prodsums[n]], {n, 30}]
PROG
(PARI) MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
seq(n)={MultEulerT(vector(n, n, numbpart(n)))} \\ Andrew Howroyd, Oct 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 05 2018
STATUS
approved