login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328745 Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(-s))^p. 1
1, 2, 3, 3, 5, 6, 7, 4, 6, 10, 11, 9, 13, 14, 15, 5, 17, 12, 19, 15, 21, 22, 23, 12, 15, 26, 10, 21, 29, 30, 31, 6, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 33, 30, 46, 47, 15, 28, 30, 51, 39, 53, 20, 55, 28, 57, 58, 59, 45, 61, 62, 42, 7, 65, 66, 67, 51, 69, 70, 71, 24, 73, 74, 45 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of ways to factor n into 2 kinds of 2, 3 kinds of 3, 5 kinds of 5, ... , p kinds of p.

LINKS

Table of n, a(n) for n=1..75.

FORMULA

If n = Product (p_j^k_j) then a(n) = Product (binomial(p_j + k_j - 1, k_j)).

MAPLE

a:= n-> mul(binomial(i[1]+i[2]-1, i[2]), i=ifactors(n)[2]):

seq(a(n), n=1..100);  # Alois P. Heinz, Oct 26 2019

MATHEMATICA

a[n_] := Times @@ (Binomial[#[[1]] + #[[2]] - 1, #[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 75}]

CROSSREFS

Cf. A008480, A050367, A059481, A135323, A182938.

Sequence in context: A178041 A181805 A212010 * A003967 A099209 A099208

Adjacent sequences:  A328742 A328743 A328744 * A328746 A328747 A328748

KEYWORD

nonn,mult

AUTHOR

Ilya Gutkovskiy, Oct 26 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 03:09 EST 2021. Contains 341732 sequences. (Running on oeis4.)