|
|
A182938
|
|
If n = Product (p_j^e_j) then a(n) = Product (binomial(p_j, e_j)).
|
|
5
|
|
|
1, 2, 3, 1, 5, 6, 7, 0, 3, 10, 11, 3, 13, 14, 15, 0, 17, 6, 19, 5, 21, 22, 23, 0, 10, 26, 1, 7, 29, 30, 31, 0, 33, 34, 35, 3, 37, 38, 39, 0, 41, 42, 43, 11, 15, 46, 47, 0, 21, 20, 51, 13, 53, 2, 55, 0, 57, 58, 59, 15, 61, 62, 21, 0, 65, 66
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(A185359(n)) = 0. - Reinhard Zumkeller, Feb 18 2012
Dirichlet g.f.: Product_{p prime} (1 + p^(-s))^p. - Ilya Gutkovskiy, Oct 26 2019
|
|
MAPLE
|
A182938 := proc(n) local e, j; e := ifactors(n)[2]:
mul (binomial(e[j][1], e[j][2]), j=1..nops(e)) end:
seq (A182938(n), n=1..100);
|
|
MATHEMATICA
|
a[n_] := Times @@ (Map[Binomial @@ # &, FactorInteger[n], 1]);
Table[a[n], {n, 1, 100}] (-Kellen Myers)
|
|
PROG
|
(PARI) a(n)=prod(i=1, #n=factor(n)~, binomial(n[1, i], n[2, i])) \\ - M. F. Hasler
(Haskell)
a182938 n = product $ zipWith a007318'
(a027748_row n) (map toInteger $ a124010_row n)
-- Reinhard Zumkeller, Feb 18 2012
|
|
CROSSREFS
|
Cf. A000026, A001414, A008473, A008474, A008475, A008476, A008477, A028310, A069799.
Cf. A027748, A124010, A007318.
Sequence in context: A339470 A130508 A341635 * A329445 A055231 A304328
Adjacent sequences: A182935 A182936 A182937 * A182939 A182940 A182941
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
Peter Luschny, Jan 16 2011
|
|
EXTENSIONS
|
Given terms checked with new PARI code by M. F. Hasler, Jan 16 2011
|
|
STATUS
|
approved
|
|
|
|