The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182938 If n = Product (p_j^e_j) then a(n) = Product (binomial(p_j, e_j)). 5
 1, 2, 3, 1, 5, 6, 7, 0, 3, 10, 11, 3, 13, 14, 15, 0, 17, 6, 19, 5, 21, 22, 23, 0, 10, 26, 1, 7, 29, 30, 31, 0, 33, 34, 35, 3, 37, 38, 39, 0, 41, 42, 43, 11, 15, 46, 47, 0, 21, 20, 51, 13, 53, 2, 55, 0, 57, 58, 59, 15, 61, 62, 21, 0, 65, 66 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(A185359(n)) = 0. - Reinhard Zumkeller, Feb 18 2012 Dirichlet g.f.: Product_{p prime} (1 + p^(-s))^p. - Ilya Gutkovskiy, Oct 26 2019 MAPLE A182938 := proc(n) local e, j; e := ifactors(n)[2]: mul (binomial(e[j][1], e[j][2]), j=1..nops(e)) end: seq (A182938(n), n=1..100); MATHEMATICA a[n_] := Times @@ (Map[Binomial @@ # &, FactorInteger[n], 1]); Table[a[n], {n, 1, 100}] (-Kellen Myers) PROG (PARI) a(n)=prod(i=1, #n=factor(n)~, binomial(n[1, i], n[2, i])) \\ - M. F. Hasler (Haskell) a182938 n = product \$ zipWith a007318' (a027748_row n) (map toInteger \$ a124010_row n) -- Reinhard Zumkeller, Feb 18 2012 CROSSREFS Cf. A000026, A001414, A008473, A008474, A008475, A008476, A008477, A028310, A069799. Cf. A027748, A124010, A007318. Sequence in context: A339470 A130508 A341635 * A329445 A055231 A304328 Adjacent sequences: A182935 A182936 A182937 * A182939 A182940 A182941 KEYWORD nonn,mult AUTHOR Peter Luschny, Jan 16 2011 EXTENSIONS Given terms checked with new PARI code by M. F. Hasler, Jan 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 9 02:59 EST 2023. Contains 360153 sequences. (Running on oeis4.)