OFFSET
0,4
COMMENTS
LINKS
Dirk Laurie, Old and new ways of computing the gamma function, page 14, 2005.
Peter Luschny, Approximation Formulas for the Factorial Function.
W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
FORMULA
z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2) Sum_{n>=0} G_n / (z+1/2)^n.
EXAMPLE
G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
MAPLE
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Numerator, {n, 0, 15}] (* Jean-François Alcover, Jul 26 2013, after Maple *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Feb 24 2011
STATUS
approved