login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182934
Generalized Bell numbers, column 2 of A182933.
2
1, 2, 27, 778, 37553, 2688546, 265141267, 34260962282, 5594505151713, 1123144155626338, 271300013006911211, 77489174023697484522, 25797166716252173322577, 9890278784047791697198658, 4322087630240844404678150883
OFFSET
0,2
FORMULA
a(n) = exp(-1)*n!^2*F_2([n+1,n+1],[1,2] |1), F_2 the generalized hypergeometric function of type 2_F_2.
Let b_{n}(x) = Sum_{j>=0}(x*exp((j+n-1)!/(j-1)!-1)/j!) then a(n) = 2 [x^2] series b_{n}(x), where [x^2] denotes the coefficient of x^2 in the Taylor series for b_{n}(x).
MAPLE
A182934 := proc(n)
exp(-x)*n!^2*hypergeom([n+1, n+1], [1, 2], x); round(evalf(subs(x=1, %), 66)) end:
seq(A182934(n), n=0..14);
MATHEMATICA
a[n_] := n!^2*HypergeometricPFQ[{n+1, n+1}, {1, 2}, 1.`40.]/E; Table[a[n] // Round, {n, 0, 14}] (* Jean-François Alcover, Jul 29 2013 *)
CROSSREFS
Sequence in context: A300591 A377893 A251693 * A078102 A221534 A221535
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 29 2011
STATUS
approved