OFFSET
0,13
COMMENTS
Column k > 2 is asymptotic to 2^(2*n) * (k-1)^(n+1) / ((k-2)^2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 07 2014
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
C. Kassel and C. Reutenauer, Algebraicity of the zeta function associated to a matrix over a free group algebra, arXiv preprint arXiv:1303.3481, 2013
A. Lakshminarayan, Z. Puchala, K. Zyczkowski, Diagonal unitary entangling gates and contradiagonal quantum states, arXiv preprint arXiv:1407.1169, 2014
FORMULA
EXAMPLE
A(3,2) = 10, because 10 words of length 6 beginning with the first character of the 2-letter alphabet {a, b} can be built by repeatedly inserting doublets (words with two equal letters) into the initially empty word: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, ...
0, 1, 3, 5, 7, 9, ...
0, 1, 10, 29, 58, 97, ...
0, 1, 35, 181, 523, 1145, ...
0, 1, 126, 1181, 4966, 14289, ...
MAPLE
A:= proc(n, k)
local j;
if n=0 then 1
elif k<=1 then k
else add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)/n
fi
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
a[n_, k_] := If[ n == 0, 1 , If[ k <= 1, k, Sum [Binomial[2*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}] / n ] ]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 26 2010
STATUS
approved