OFFSET
0,8
COMMENTS
A(n,k) is also the number of rooted closed walks of length 2n on the infinite rooted k-ary tree. - Danny Rorabaugh, Oct 31 2017
A(n,2k) is the number of unreduced words of length 2n that reduce to the empty word in the free group with k generators. - Danny Rorabaugh, Nov 09 2017
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
Jason Bell, Marni Mishna, On the Complexity of the Cogrowth Sequence, arXiv:1805.08118 [math.CO], 2018.
Beth Bjorkman et al., k-foldability of words, arXiv preprint arXiv:1710.10616 [math.CO], 2017.
FORMULA
EXAMPLE
A(2,2) = 6, because 6 words of length 4 can be built over 2-letter alphabet {a, b} by repeatedly inserting doublets (words with two equal letters) into the initially empty word: aaaa, aabb, abba, baab, bbaa, bbbb.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 6, 15, 28, 45, ...
0, 1, 20, 87, 232, 485, ...
0, 1, 70, 543, 2092, 5725, ...
0, 1, 252, 3543, 19864, 71445, ...
MAPLE
A:= proc(n, k) local j;
if n=0 then 1
else k/n *add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1)
fi
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
A[_, 1] = 1; A[n_, k_] := If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*(k - 1)^j, {j, 0, n - 1}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 26 2010
STATUS
approved