login
A130978
G.f.: 12/(5 + 7*sqrt(1-24*x)).
6
1, 7, 91, 1435, 24955, 460747, 8859739, 175466347, 3553964155, 73266506635, 1532152991131, 32420721097387, 692865048943291, 14932919812627915, 324195908270339035, 7083228794200550635
OFFSET
0,2
COMMENTS
Number of walks of length 2n on the 7-regular tree beginning and ending at some fixed vertex. Hankel transform is A135314. - Philippe Deléham, Feb 25 2009
LINKS
FORMULA
a(n) = Sum_{k=0..n} A039599(n,k)*6^(n-k). - Philippe Deléham, Aug 25 2007
D-finite with recurrence: n*a(n) = (73*n-36)*a(n-1) - 588*(2*n-3)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 7*2^(3*n+1)*3^(n+1)/(25*sqrt(Pi)*n^(3/2)) . - Vaclav Kotesovec, Oct 20 2012
MAPLE
g:=12/(5+7*sqrt(1-24*x)); gser:=series(g, x=0, 20); seq(coeff(gser, x, n), n=0..15); # Emeric Deutsch, Aug 26 2007
MATHEMATICA
CoefficientList[Series[12/(5+7*Sqrt[1-24*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Column k=7 of A183135.
Sequence in context: A156712 A004368 A243946 * A191097 A234570 A133307
KEYWORD
nonn
AUTHOR
Philippe Deléham, Aug 23 2007
EXTENSIONS
More terms from Emeric Deutsch, Aug 26 2007
STATUS
approved