Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jan 30 2020 21:29:16
%S 1,7,91,1435,24955,460747,8859739,175466347,3553964155,73266506635,
%T 1532152991131,32420721097387,692865048943291,14932919812627915,
%U 324195908270339035,7083228794200550635
%N G.f.: 12/(5 + 7*sqrt(1-24*x)).
%C Number of walks of length 2n on the 7-regular tree beginning and ending at some fixed vertex. Hankel transform is A135314. - _Philippe Deléham_, Feb 25 2009
%H Vincenzo Librandi, <a href="/A130978/b130978.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = Sum_{k=0..n} A039599(n,k)*6^(n-k). - _Philippe Deléham_, Aug 25 2007
%F D-finite with recurrence: n*a(n) = (73*n-36)*a(n-1) - 588*(2*n-3)*a(n-2) . - _Vaclav Kotesovec_, Oct 20 2012
%F a(n) ~ 7*2^(3*n+1)*3^(n+1)/(25*sqrt(Pi)*n^(3/2)) . - _Vaclav Kotesovec_, Oct 20 2012
%p g:=12/(5+7*sqrt(1-24*x));gser:=series(g,x=0,20); seq(coeff(gser,x,n),n=0..15); # _Emeric Deutsch_, Aug 26 2007
%t CoefficientList[Series[12/(5+7*Sqrt[1-24*x]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%Y Column k=7 of A183135.
%K nonn
%O 0,2
%A _Philippe Deléham_, Aug 23 2007
%E More terms from _Emeric Deutsch_, Aug 26 2007