login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133307
a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*6^i*7^(n-i), a(0)=1.
5
1, 7, 91, 1477, 26845, 522739, 10663471, 224939113, 4866571801, 107393779423, 2407939176643, 54700070934061, 1256249370578293, 29119953189833611, 680401905145643863, 16008309928027493713, 378930780842531820721, 9017843351806985482423, 215634517504141993966891
OFFSET
0,2
COMMENTS
Seventh column of array A103209.
The Hankel transform of this sequence is 42^C(n+1,2). - Philippe Deléham, Oct 28 2007
LINKS
FORMULA
G.f.: (1-z-sqrt(z^2-26*z+1))/(12*z).
a(n) = Sum_{k=0..n} A088617(n,k)*6^k .
a(n) = Sum_{k=0..n} A060693(n,k)*6^(n-k).
a(n) = Sum_{k=0..n} C(n+k, 2k)6^k*C(k), C(n) given by A000108.
a(0)=1, a(n) = a(n-1) + 6*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
Conjecture: (n+1)*a(n) + 13*(-2*n+1)*a(n-1) + (n-2)*a(n-2) = 0. - R. J. Mathar, May 23 2014
a(n) = hypergeom([-n, n+1], [2], -6). # Peter Luschny, May 23 2014
G.f.: 1/(1 - 7*x/(1 - 6*x/(1 - 7*x/(1 - 6*x/(1 - 7*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017
a(n) ~ 42^(1/4) * (13 + 2*sqrt(42))^(n + 1/2) / (12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 29 2021
MAPLE
a := n -> hypergeom([-n, n+1], [2], -6);
seq(round(evalf(a(n), 32)), n=0..16); # Peter Luschny, May 23 2014
MATHEMATICA
CoefficientList[Series[(1-x-Sqrt[x^2-26*x+1])/(12*x), {x, 0, 50}], x] (* G. C. Greubel, Feb 10 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1-x-sqrt(x^2-26*x+1))/(12*x)) \\ G. C. Greubel, Feb 10 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-26*x+1))/(12*x))) // G. C. Greubel, Feb 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Oct 18 2007
STATUS
approved