OFFSET
0,2
COMMENTS
Eighth column of array A103209.
The Hankel transform of this sequence is 56^C(n+1,2). - Philippe Deléham, Oct 28 2007
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..675
FORMULA
G.f.: (1-z-sqrt(z^2-30*z+1))/(14*z).
a(n) = Sum_{k, 0<=k<=n} A088617(n,k)*7^k.
a(n) = Sum_{k, 0<=k<=n} A060693(n,k)*7^(n-k).
a(n) = Sum_{k, 0<=k<=n} C(n+k, 2k)7^k*C(k), C(n) given by A000108.
a(0)=1, a(n) = a(n-1) + 7*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
Conjecture: (n+1)*a(n) + 15*(-2*n+1)*a(n-1) + (n-2)*a(n-2) = 0. - R. J. Mathar, May 23 2014
a(n) = hypergeom([-n, n+1], [2], -7). - Peter Luschny, May 23 2014
G.f.: 1/(1 - 8*x/(1 - 7*x/(1 - 8*x/(1 - 7*x/(1 - 8*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017
MAPLE
a := n -> hypergeom([-n, n+1], [2], -7);
seq(round(evalf(a(n), 32)), n=0..15); # Peter Luschny, May 23 2014
MATHEMATICA
CoefficientList[Series[(1-x-Sqrt[x^2-30*x+1])/(14*x), {x, 0, 50}], x] (* G. C. Greubel, Feb 10 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1-x-sqrt(x^2-30*x+1))/(14*x)) \\ G. C. Greubel, Feb 10 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-30*x+1))/(14*x))) // G. C. Greubel, Feb 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Oct 18 2007
STATUS
approved