OFFSET
0,2
COMMENTS
Ninth column of array A103209.
The Hankel transform of this sequence is 72^C(n+1,2). - Philippe Deléham, Oct 29 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
G.f.: (1-z-sqrt(z^2-34*z+1))/16.
a(n) = Sum_{k=0..n} A088617(n,k)*8^k.
a(n) = Sum_{k=0..n} A060693(n,k)*8^(n-k).
a(n) = Sum_{k=0..n} C(n+k, 2k)8^k*C(k), C(n) given by A000108.
a(0)=1, a(n) = a(n-1) + 8*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
a(n) ~ sqrt(144+102*sqrt(2))*(17+12*sqrt(2))^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
Recurrence: (n+1)*a(n) = 17*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Aug 13 2013
G.f.: 1/(1 - 9*x/(1 - 8*x/(1 - 9*x/(1 - 8*x/(1 - 9*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017
MATHEMATICA
Rest@ CoefficientList[ Series[(1-x-Sqrt[x^2-34*x+1])/16, {x, 0, 18}], x] (* Robert G. Wilson v, Oct 19 2007 *)
Table[-((3 I LegendreP[n, -1, 2, 17])/(2 Sqrt[2])), {n, 0, 20}] (* Vaclav Kotesovec, Aug 13 2013 *)
PROG
(PARI) x='x+O('x^30); Vec((1-x-sqrt(x^2-34*x+1))/16) \\ G. C. Greubel, Feb 10 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!(((1 -x-Sqrt[x^2-34*x+1])/16)) // G. C. Greubel, Feb 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Oct 18 2007
EXTENSIONS
More terms from Robert G. Wilson v, Oct 19 2007
STATUS
approved