login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130977
G.f.: 5/(2 + 3*sqrt(1-20*x)).
6
1, 6, 66, 876, 12786, 197796, 3183156, 52718616, 892401426, 15368638836, 268388185596, 4741271556456, 84573471344916, 1521119577791976, 27554494253636136, 502257203287150896, 9205363627419463506
OFFSET
0,2
COMMENTS
Number of walks of length 2n on the 6-regular tree beginning and ending at some fixed vertex. Hankel transform is A135349. - Philippe Deléham, Feb 25 2009
LINKS
FORMULA
a(n) = Sum_{k=0..n} A039599(n,k)*5^(n-k). - Philippe Deléham, Aug 25 2007
From Gary W. Adamson, Jul 22 2011: (Start)
a(n) = upper left term in M^n, M = an infinite square production matrix as follows:
6, 6, 0, 0, 0, 0, ...
5, 5, 5, 0, 0, 0, ...
5, 5, 5, 5, 0, 0, ...
5, 5, 5, 5, 5, 0, ...
5, 5, 5, 5, 5, 5, ...
... (End)
D-finite with recurrence: n*a(n) = 2*(28*n-15)*a(n-1) - 360*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3*2^(2*n-3)*5^(n+1)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
CoefficientList[Series[5/(2+3*Sqrt[1-20*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Column k=6 of A183135.
Sequence in context: A004355 A282046 A124862 * A191096 A151832 A378840
KEYWORD
nonn
AUTHOR
Philippe Deléham, Aug 23 2007
EXTENSIONS
More terms from Olivier Gérard, Sep 22 2007
STATUS
approved