login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361950
Array read by antidiagonals: T(n,k) = n! * Sum_{s} 2^(Sum_{i=1..k-1} s(i)*s(i+1))/(Product_{i=1..k} s(i)!) where the sum is over all nonnegative compositions s of n into k parts.
7
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 13, 26, 1, 0, 1, 5, 22, 81, 162, 1, 0, 1, 6, 33, 166, 721, 1442, 1, 0, 1, 7, 46, 287, 1726, 9153, 18306, 1, 0, 1, 8, 61, 450, 3309, 24814, 165313, 330626, 1, 0, 1, 9, 78, 661, 5650, 50975, 494902, 4244481, 8488962, 1, 0
OFFSET
0,8
COMMENTS
T(n,k) corresponds to c(k,n) in the Klarner reference. This is an intermediate step in the computation of the number of labeled weakly graded (ranked) posets. The number of elements in the poset is n and the rank k.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
EXAMPLE
Array begins:
======================================================
n/k| 0 1 2 3 4 5 6 ...
---+--------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 6 ...
2 | 0 1 6 13 22 33 46 ...
3 | 0 1 26 81 166 287 450 ...
4 | 0 1 162 721 1726 3309 5650 ...
5 | 0 1 1442 9153 24814 50975 91866 ...
6 | 0 1 18306 165313 494902 1058493 1957066 ...
7 | 0 1 330626 4244481 13729846 29885567 55363650 ...
...
T(3,2) = 26: the nonnegative integer compositions of 3 with 2 parts are (0,3), (1,2), (2,1), (3,0). These contribute, respectively 2^0*3!/(0!*3!) = 1, 2^2*3!/(1!*2!) = 12, 2^2*3!/(2!*1!) = 12, 2^0*3!/(0!*3!) = 1, so T(3,2) = 1 + 12 + 12 + 1 = 26.
PROG
(PARI)
S(M)={matrix(#M, #M, i, j, sum(k=0, i-j, 2^((j-1)*k)*M[i-j+1, k+1])/(j-1)! )}
C(n, m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c}
R(n)={Mat([Col(serlaplace(p)) | p<-C(n)])}
{ my(A=R(6)); for(i=1, #A, print(A[i, ])) }
CROSSREFS
Rows 0..2 are A000012, A000027, A028872(n+1).
The unlabeled version is A361952.
Cf. A361951.
Sequence in context: A118345 A292804 A118350 * A183135 A294042 A287316
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 31 2023
STATUS
approved