OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
FORMULA
G.f.: 5/6 + 5/(3*(4+6*sqrt(1-20*x))).
a(0) = 1, a(n) = 1/n * Sum_{j=0..n-1} C(2*n,j)*(n-j)*5^j for n>0.
a(n) ~ 5*20^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
D-finite with recurrence: n*a(n) = 2*(28*n-15)*a(n-1) - 360*(2*n-3)*a(n-2). - Vaclav Kotesovec, Aug 13 2013
From Karol A. Penson, Jul 12 2015: (Start)
Special values of the hypergeometric function 2F1, in Maple notation:
a(n+1) = (25/9)*20^n*GAMMA(n+3/2)*hypergeom([1, n+3/2], [n+3],5/9)/(sqrt(Pi)*(n+2)!), n=0,1,... .
Integral representation as the n-th moment of a positive function W(x) = sqrt((20-x)*x)*(1/(36-x))/(2*Pi) on (0,20): a(n+1) = int(x^n*W(x),x=0..20), n=0,1,... . This representation is unique as W(x) is the solution of the Hausdorff moment problem. (End)
EXAMPLE
a(2) = 11: aaaa, aabb, aacc, aadd, aaee, aaff, abba, acca, adda, aeea, affa (with 6-ary alphabet {a,b,c,d,e,f}).
MAPLE
a:= n-> `if`(n=0, 1, add(binomial(2*n, j) *(n-j) *5^j, j=0..n-1) /n):
seq(a(n), n=0..25);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 02 2011
STATUS
approved