OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
FORMULA
G.f.: 7/8 + 7/(4*(6+8*sqrt(1-28*x))).
a(0) = 1, a(n) = 1/n * Sum_{j=0..n-1} C(2*n,j)*(n-j)*7^j for n>0.
a(n) ~ 7 * 28^n / (36 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 07 2014
D-finite with recurrence n*a(n) +2*(-46*n+21)*a(n-1) +896*(2*n-3)*a(n-2)=0. - R. J. Mathar, Mar 14 2015
From Karol A. Penson, Jul 13 2015: (Start)
Special values of the hypergeometric function 2F1, in Maple notation:
a(n+1) = (7/4)^2*(28)^n*GAMMA(n+3/2)*hypergeom([1, n+3/2], [n+3],7/16)/(sqrt(Pi)*(n+2)!), n=0,1,... .
Integral representation as the n-th moment of a positive function W(x) = sqrt((28-x)*x)*(1/(64-x))/(2*Pi) on (0,28): a(n+1) = int(x^n*W(x), x=0..28), n=0,1,... . This representation is unique as W(x) is the solution of the Hausdorff moment problem. (End)
EXAMPLE
a(2) = 15: aaaa, aabb, aacc, aadd, aaee, aaff, aagg, aahh, abba, acca, adda, aeea, affa, agga, ahha (with 8-ary alphabet {a,b,c,d,e,f,g,h}).
MAPLE
a:= n-> `if`(n=0, 1, add(binomial(2*n, j) *(n-j) *7^j, j=0..n-1) /n):
seq(a(n), n=0..20);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 02 2011
STATUS
approved