login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034687 Related to quintic factorial numbers A008548. 6
1, 15, 275, 5500, 115500, 2502500, 55412500, 1246781250, 28398906250, 653174843750, 15141780468750, 353308210937500, 8289154179687500, 195387205664062500, 4624163867382812500, 109823891850341796875 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Convolution of A034688(n-1) with A025750(n), n >= 1.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..717 (first 500 terms from G. C. Greubel).
Wolfdieter Lang, On generalizations of the Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
a(n) = 5^(n-1)*A008548(n)/n!, where A008548(n)=(5*n-4)(!^5) = Product_{j=1..n} (5*j-4).
G.f.: (-1 + (1-25*x)^(-1/5))/5.
E.g.f.: (1/5)*L_{-1/5}(25*x) - 1, where L_{k}(x) is the Laguerre polynomial. - Stefano Spezia, Aug 17 2019
MAPLE
seq(5^(n-1)*(product(5*k+1, k = 0..n-1))/factorial(n), n = 1..20); # G. C. Greubel, Aug 17 2019
MATHEMATICA
Table[5^(2*n-1)*Pochhammer[1/5, n]/n!, {n, 20}] (* G. C. Greubel, Aug 17 2019 *)
PROG
(PARI) vector(20, n, 5^(n-1)*prod(k=0, n-1, 5*k+1)/n!) \\ G. C. Greubel, Aug 17 2019
(Magma) [5^(n-1)*(&*[5*k+1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 17 2019
(Sage) [5^(n-1)*product(5*k+1 for k in (0..n-1))/factorial(n) for n in (1..20)] # G. C. Greubel, Aug 17 2019
(GAP) List([1..20], n-> 5^(n-1)*Product([0..n-1], k-> 5*k+1)/Factorial(n)); # G. C. Greubel, Aug 17 2019
CROSSREFS
Cf. A034255.
Sequence in context: A194728 A284077 A339118 * A159239 A279976 A308835
KEYWORD
easy,nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 14:01 EDT 2024. Contains 371635 sequences. (Running on oeis4.)