The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034687 Related to quintic factorial numbers A008548. 6
 1, 15, 275, 5500, 115500, 2502500, 55412500, 1246781250, 28398906250, 653174843750, 15141780468750, 353308210937500, 8289154179687500, 195387205664062500, 4624163867382812500, 109823891850341796875 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Convolution of A034688(n-1) with A025750(n), n >= 1. LINKS Michael De Vlieger, Table of n, a(n) for n = 1..717 (first 500 terms from G. C. Greubel). Wolfdieter Lang, On generalizations of the Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4. Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019. FORMULA a(n) = 5^(n-1)*A008548(n)/n!, where A008548(n)=(5*n-4)(!^5) = Product_{j=1..n} (5*j-4). G.f.: (-1 + (1-25*x)^(-1/5))/5. E.g.f.: (1/5)*L_{-1/5}(25*x) - 1, where L_{k}(x) is the Laguerre polynomial. - Stefano Spezia, Aug 17 2019 MAPLE seq(5^(n-1)*(product(5*k+1, k = 0..n-1))/factorial(n), n = 1..20); # G. C. Greubel, Aug 17 2019 MATHEMATICA Table[5^(2*n-1)*Pochhammer[1/5, n]/n!, {n, 20}] (* G. C. Greubel, Aug 17 2019 *) PROG (PARI) vector(20, n, 5^(n-1)*prod(k=0, n-1, 5*k+1)/n!) \\ G. C. Greubel, Aug 17 2019 (Magma) [5^(n-1)*(&*[5*k+1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 17 2019 (Sage) [5^(n-1)*product(5*k+1 for k in (0..n-1))/factorial(n) for n in (1..20)] # G. C. Greubel, Aug 17 2019 (GAP) List([1..20], n-> 5^(n-1)*Product([0..n-1], k-> 5*k+1)/Factorial(n)); # G. C. Greubel, Aug 17 2019 CROSSREFS Cf. A034255. Sequence in context: A194728 A284077 A339118 * A159239 A279976 A308835 Adjacent sequences: A034684 A034685 A034686 * A034688 A034689 A034690 KEYWORD easy,nonn AUTHOR Wolfdieter Lang STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 14:01 EDT 2024. Contains 371635 sequences. (Running on oeis4.)