OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
C. Kassel and C. Reutenauer, Algebraicity of the zeta function associated to a matrix over a free group algebra, arXiv preprint arXiv:1303.3481, 2013
FORMULA
G.f.: 3/4 + 3/(2*(2+4*sqrt(1-12*x))).
a(0) = 1, a(n) = 1/n * Sum_{j=0..n-1} C(2*n,j)*(n-j)*3^j for n>0.
a(n) ~ 3 * 12^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 07 2014
Conjecture: n*a(n) +2*(-14*n+9)*a(n-1) +96*(2*n-3)*a(n-2)=0. - R. J. Mathar, Mar 14 2015
EXAMPLE
a(2) = 7: aaaa, aabb, aacc, aadd, abba, acca, adda (with quaternary alphabet {a,b,c,d}).
MAPLE
a:= n-> `if`(n=0, 1, add(binomial(2*n, j) *(n-j) *3^j, j=0..n-1)/n):
seq(a(n), n=0..25);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [1, 1, 7][n+1],
((28*n-18)*a(n-1) -(192*n-288)*a(n-2))/n)
end:
seq(a(n), n=0..30);
MATHEMATICA
CoefficientList[Series[3/4+3/(2(2+4Sqrt[1-12x])), {x, 0, 30}], x] (* Harvey P. Dale, Sep 30 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 02 2011
STATUS
approved