login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328749
a(n) = Sum_{k = 0..w and t_k > 0} (-1)^t_k * 2^k, where Sum_{k = 0..w} t_k * 3^k is the ternary representation of n.
3
0, -1, 1, -2, -3, -1, 2, 1, 3, -4, -5, -3, -6, -7, -5, -2, -3, -1, 4, 3, 5, 2, 1, 3, 6, 5, 7, -8, -9, -7, -10, -11, -9, -6, -7, -5, -12, -13, -11, -14, -15, -13, -10, -11, -9, -4, -5, -3, -6, -7, -5, -2, -3, -1, 8, 7, 9, 6, 5, 7, 10, 9, 11, 4, 3, 5, 2, 1, 3, 6
OFFSET
0,4
COMMENTS
Every integer appears in the sequence.
LINKS
FORMULA
a(n) = 0 iff n = 0.
a(n) > 0 iff n belongs to A157671.
a(n) < 0 iff n belongs to A132141.
a(A004488(n)) = -a(n).
EXAMPLE
a(42) = a(1*3^3 + 1*3^2 + 2*3^1) = -2^3 - 2^2 + 2^1 = -10.
PROG
(PARI) a(n) = my (d=Vecrev(digits(n, 3))); sum(i=1, #d, if (d[i], (2^i) * (-1)^d[i], 0))/2
(Python)
from sympy.ntheory.factor_ import digits
def A328749(n): return sum((-(1<<i) if j&1 else 1<<i) for i, j in enumerate(digits(n, 3)[-1:0:-1]) if j>0) # Chai Wah Wu, Apr 12 2023
CROSSREFS
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Oct 27 2019
STATUS
approved