login
A328752
Lexicographically earliest sequence of distinct positive numbers such that for any n > 0, the first nonzero digit of a(n+1)/a(n) is "1".
9
1, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
OFFSET
1,2
COMMENTS
In other words, for any n > 0, we have an integer k such that floor(10^k * a(n+1)/a(n)) = 1.
FORMULA
a(n) = n for n > 11.
EXAMPLE
The first terms, alongside a(n+1)/a(n), are:
n a(n) a(n+1)/a(n)
-- ---- -----------
1 1 10
2 10 1.1
3 11 0.18181818...
4 2 1.5
5 3 1.33333333...
6 4 1.25
7 5 1.2
8 6 1.16666666...
9 7 1.14285714...
10 8 1.125
11 9 1.33333333...
12 12 1.08333333...
PROG
(PARI) See Links section.
CROSSREFS
See A328753, A328754, A328755, A328756, A328757, A328758, A328759 and A328760 for the variants where a(n+1)/a(n) starts with "2", "3", "4", "5", "6", "7", "8" and "9", respectively.
Sequence in context: A336035 A334676 A176998 * A173821 A101807 A248025
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Oct 27 2019
STATUS
approved