login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328751
Constant term in the expansion of (-2 + (1 + w) * (1 + x) * (1 + y) * (1 + z) + (1 + 1/w) * (1 + 1/x) * (1 + 1/y) * (1 + 1/z))^n.
4
1, 0, 30, 300, 6690, 124920, 2778600, 61790400, 1452751650, 34806097200, 855836532180, 21393889763400, 543342862524000, 13972938142363200, 363356617578926400, 9538720137580233600, 252510537115100657250, 6733792260826534332000, 180751978201192700659500
OFFSET
0,3
FORMULA
a(n) = Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^5.
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: n^4*(22*n^2 - 198*n + 323)*a(n) = (n-1)*(198*n^5 - 1980*n^4 + 4535*n^3 - 2641*n^2 + 119*n + 210)*a(n-1) + (11066*n^6 - 143858*n^5 + 628715*n^4 - 1298438*n^3 + 1394723*n^2 - 756728*n + 165060)*a(n-2) + 4*(n-2)*(19096*n^5 - 248248*n^4 + 1086158*n^3 - 2156993*n^2 + 2004912*n - 708435)*a(n-3) + 40*(n-3)*(n-2)*(5346*n^4 - 64152*n^3 + 242653*n^2 - 363566*n + 182959)*a(n-4) + 400*(n-4)*(n-3)*(n-2)*(682*n^3 - 6820*n^2 + 17955*n - 12432)*a(n-5) + 6000*(n-5)*(n-4)*(n-3)*(n-2)*(22*n^2 - 154*n + 147)*a(n-6).
a(n) ~ 2^(n-6) * 3^(n+2) * 5^(n + 3/2) / (Pi^2 * n^2). (End)
MATHEMATICA
Table[Sum[(-2)^(n-i)*Binomial[n, i] * Sum[Binomial[i, j]^5, {j, 0, i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 20 2023 *)
PROG
(PARI) {a(n) = sum(i=0, n, (-2)^(n-i)*binomial(n, i)*sum(j=0, i, binomial(i, j)^5))}
CROSSREFS
Column k=5 of A328748.
Sequence in context: A061605 A125393 A126551 * A042750 A074994 A134287
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 27 2019
STATUS
approved