login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128864
a(0)=a(1)=1. For n>=2, a(n) = number of positive divisors of n that are coprime to (a(n-1) + a(n-2)).
1
1, 1, 1, 2, 3, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 3, 4, 4, 2, 2, 4, 2, 1, 2, 4, 4, 3, 2, 4, 2, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 2, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 6, 1, 4, 8, 2, 2, 4, 4, 2, 1, 2, 4, 3, 6, 4, 4, 2, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 6, 4, 2, 2, 2, 4, 1, 2, 6, 6, 3, 2, 8, 2, 2
OFFSET
0,4
EXAMPLE
a(12)+a(13) = 4. There are two divisors of 14 which are coprime to 4. (These divisors are 1 and 7.) So a(14) = 2.
MAPLE
with(numtheory): a[0]:=1: a[1]:=1: for n from 2 to 130 do div:=divisors(n): ct:=0: for j from 1 to tau(n) do if igcd(div[j], a[n-1]+a[n-2])=1 then ct:=ct+1 else ct:=ct: fi: od: a[n]:=ct: od: seq(a[n], n=0..130); # Emeric Deutsch, Apr 26 2007
A128864 := proc(nmax) local a, n, dvs, resl, d ; a := [1, 1] ; while nops(a) < nmax do n := nops(a) ; dvs := numtheory[divisors](n) ; resl :=0 ; for d from 1 to nops(dvs) do if gcd(op(d, dvs), op(-1, a)+op(-2, a)) = 1 then resl := resl+1 ; fi ; od ; a := [op(a), resl] ; od ; RETURN(a) ; end: A128864(100) ; # R. J. Mathar, Apr 27 2007
CROSSREFS
Cf. A116204.
Sequence in context: A328749 A036848 A289585 * A106798 A214640 A224965
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 17 2007
EXTENSIONS
More terms from Emeric Deutsch and R. J. Mathar, Apr 26 2007
STATUS
approved