login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106798
Fixed point of the morphism 1 -> 3; 2 -> 1,2,2; 3 -> 1,2, starting with a(0) = 1.
4
1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1
OFFSET
0,2
COMMENTS
3-symbol substitution for the characteristic polynomial: x^3 - 2*x^2 - x + 1.
LINKS
FORMULA
a(n) = p(2*n), where p(n) maps the fixed point morphism 1 -> 3; 2 -> 1,2,2; 3 -> 1,2, starting with p(0) = 1.
EXAMPLE
The first few steps of the substitution are:
Start: 1
Maps:
1 --> 3
2 --> 1 2 2
3 --> 1 2
-------------
a(n) = p(2*n)
-------------
0: (#=1) (p(0))
1
1: (#=2) (p(2))
12
2: (#=9) (p(4))
123122122
3: (#=45) (p(6))
123122122312212312212231221221231221223122122
MATHEMATICA
s[1]= {3}; s[2]= {1, 2, 2}; s[3]= {1, 2}; t[b_]:= Flatten[s /@ b];
p[0]= {1}; p[1]= t[p[0]]; p[n_]:= t[p[n-1]];
a[n_]:= p[2*n];
a[4]
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, May 17 2005
EXTENSIONS
Edited by G. C. Greubel, Apr 03 2022
STATUS
approved