login
A106799
Number of prime factors of n apart from 2 or 3, counted with multiplicity.
4
0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2
OFFSET
1,25
COMMENTS
Self-similar in every second and in every third term, i.e., a(n) = a(2n) = a(3n).
Logarithmic since a(b*c) = a(b) + a(c).
Coincidentally, a(n) = A101040(n+78) for 1 < n < 20.
LINKS
FORMULA
a(n) = A001222(n) - A007814(n) - A007949(n) = A087436(n) - A007949(n).
a(n) = A001222(A065330(n)). - Reinhard Zumkeller, May 19 2005
EXAMPLE
a(24) = 0 since 24 = 2*2*2*3.
a(25) = 2 since 25 = 5*5.
a(26) = 1 since 26 = 2*13.
MATHEMATICA
a[n_] := PrimeOmega[n] - IntegerExponent[n, 2] - IntegerExponent[n, 3]; Array[a, 100] (* Amiram Eldar, Jan 16 2022 *)
PROG
(Haskell)
a106799 = a001222 . a065330 -- Reinhard Zumkeller, Nov 19 2015
(PARI) a(n) = bigomega(n) - valuation(n, 2) - valuation(n, 3); \\ Michel Marcus, Jan 16 2022
KEYWORD
nonn
AUTHOR
Henry Bottomley, May 17 2005
STATUS
approved