OFFSET
1,5
COMMENTS
Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) > n^0.285. - Charles R Greathouse IV, May 21 2014
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
M. A. Bennett, M. Filaseta, and O. Trifonov, On the factorization of consecutive integers, J. Reine Angew. Math. 629 (2009), pp. 171-200.
FORMULA
a(n) * A065331(n) = n.
Multiplicative with a(2^e)=1, a(3^e)=1, a(p^e)=p^e, p>3. - Vladeta Jovovic, Nov 02 2001
a(1)=1; then a(2n)=a(n), a(2n+1)=a((2n+1)/3) if 2n+1 is divisible by 3, a(2n+1)=2n+1 otherwise. - Benoit Cloitre, Jun 04 2007
Dirichlet g.f. zeta(s-1)*(1-2^(1-s))*(1-3^(1-s))/ ( (1-2^(-s))*(1-3^(-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = n/GCD(n,6^n). - Stanislav Sykora, Feb 08 2016
Sum_{k=1..n} a(k) ~ (1/4) * n^2. - Amiram Eldar, Oct 22 2022
EXAMPLE
a(30) = 5.
MAPLE
A065330 := proc(n)
local a, f, p, e ;
a := 1 ;
for f in ifactors(n)[2] do
p := op(1, f) ;
e := op(2, f) ;
if p > 3 then
a := a*p^e ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Jul 12 2012
with(padic): a := n -> n/(2^ordp(n, 2)*3^ordp(n, 3));
seq(a(n), n=1..81); # Peter Luschny, Mar 25 2014
MATHEMATICA
f[n_] := Times @@ (First@#^Last@# & /@ Select[FactorInteger@n, First@# != 2 && First@# != 3 &]); Array[f, 81] (* Robert G. Wilson v, Aug 18 2006 *)
f[n_]:=Denominator[6^n/n]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
Table[n / GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
PROG
(PARI) a(n)=if(n<2, 1, if(n%2, if(n%3, n, a(n/3)), a(n/2))) \\ Benoit Cloitre, Jun 04 2007
(PARI) a(n)=n\gcd(n, 6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
(PARI) a(n)=n>>valuation(n, 2)/3^valuation(n, 3) \\ Charles R Greathouse IV, Mar 31 2016
(Haskell)
a065330 = a038502 . a000265 -- Reinhard Zumkeller, Jul 06 2011
(Magma) [n div Gcd(n, 6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
CROSSREFS
KEYWORD
mult,nonn
AUTHOR
Reinhard Zumkeller, Oct 29 2001
STATUS
approved