login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065330
a(n) = max { k | gcd(n, k) = k and gcd(k, 6) = 1 }.
25
1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 11, 1, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 1, 25, 13, 1, 7, 29, 5, 31, 1, 11, 17, 35, 1, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 1, 49, 25, 17, 13, 53, 1, 55, 7, 19, 29, 59, 5, 61, 31, 7, 1, 65, 11, 67, 17, 23, 35, 71, 1, 73, 37, 25, 19, 77, 13, 79, 5, 1
OFFSET
1,5
COMMENTS
Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) > n^0.285. - Charles R Greathouse IV, May 21 2014
LINKS
M. A. Bennett, M. Filaseta, and O. Trifonov, On the factorization of consecutive integers, J. Reine Angew. Math. 629 (2009), pp. 171-200.
FORMULA
a(n) * A065331(n) = n.
Multiplicative with a(2^e)=1, a(3^e)=1, a(p^e)=p^e, p>3. - Vladeta Jovovic, Nov 02 2001
A106799(n) = A001222(a(n)). - Reinhard Zumkeller, May 19 2005
a(1)=1; then a(2n)=a(n), a(2n+1)=a((2n+1)/3) if 2n+1 is divisible by 3, a(2n+1)=2n+1 otherwise. - Benoit Cloitre, Jun 04 2007
Dirichlet g.f. zeta(s-1)*(1-2^(1-s))*(1-3^(1-s))/ ( (1-2^(-s))*(1-3^(-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = A038502(A000265(n)). - Reinhard Zumkeller, Jul 06 2011
a(n) = n/GCD(n,6^n). - Stanislav Sykora, Feb 08 2016
Sum_{k=1..n} a(k) ~ (1/4) * n^2. - Amiram Eldar, Oct 22 2022
EXAMPLE
a(30) = 5.
MAPLE
A065330 := proc(n)
local a, f, p, e ;
a := 1 ;
for f in ifactors(n)[2] do
p := op(1, f) ;
e := op(2, f) ;
if p > 3 then
a := a*p^e ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Jul 12 2012
with(padic): a := n -> n/(2^ordp(n, 2)*3^ordp(n, 3));
seq(a(n), n=1..81); # Peter Luschny, Mar 25 2014
MATHEMATICA
f[n_] := Times @@ (First@#^Last@# & /@ Select[FactorInteger@n, First@# != 2 && First@# != 3 &]); Array[f, 81] (* Robert G. Wilson v, Aug 18 2006 *)
f[n_]:=Denominator[6^n/n]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
Table[n / GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
PROG
(PARI) a(n)=if(n<2, 1, if(n%2, if(n%3, n, a(n/3)), a(n/2))) \\ Benoit Cloitre, Jun 04 2007
(PARI) a(n)=n\gcd(n, 6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
(PARI) a(n)=n>>valuation(n, 2)/3^valuation(n, 3) \\ Charles R Greathouse IV, Mar 31 2016
(Haskell)
a065330 = a038502 . a000265 -- Reinhard Zumkeller, Jul 06 2011
(Magma) [n div Gcd(n, 6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
CROSSREFS
KEYWORD
mult,nonn
AUTHOR
Reinhard Zumkeller, Oct 29 2001
STATUS
approved