login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065333
Characteristic function of 3-smooth numbers, i.e., numbers of the form 2^i*3^j (i, j >= 0).
23
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
a(n) = signum(A065332(n)), where signum = A057427. a(n) = if A065330(n) = 1 then 1 else 0 = 1 - signum(A065330(n) - 1).
Dirichlet inverse of b(n) where b(n) = 0 except for: b(1) = b(6) = -b(2) = -b(3) = 1. - Alexander Adam, Dec 26 2012
LINKS
A. Pakapongpun, T. Ward, Functorial Orbit counting, JIS 12 (2009) 09.2.4, example 9.
FORMULA
a(n) = if n = A003586(k) for some k then 1 else 0.
a(n) = Product_{p prime and p|n} 0^floor(p/4). - Reinhard Zumkeller, Nov 19 2004
Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = 0 for prime p > 3. Dirichlet g.f. 1/(1-2^-s)/(1-3^-s). - Franklin T. Adams-Watters, Sep 01 2006
a(n) = 0^(A038502(A000265(n)) - 1). - Reinhard Zumkeller, Sep 28 2008
a(n) = Sum_{d|n} mu(6*d). - Benoit Cloitre, Oct 18 2009
MATHEMATICA
a[n_] := Boole[ 2^IntegerExponent[n, 2] * 3^IntegerExponent[n, 3] == n]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 16 2013, after Charles R Greathouse IV *)
PROG
(PARI) a(n)=sumdiv(n, d, moebius(6*d)) \\ Benoit Cloitre, Oct 18 2009
(PARI) a(n)=3^valuation(n, 3)<<valuation(n, 2)==n \\ Charles R Greathouse IV, Aug 21 2011
(Haskell)
a065333 = fromEnum . (== 1) . a038502 . a000265
-- Reinhard Zumkeller, Jan 08 2013, Apr 12 2012
CROSSREFS
Sequence in context: A054525 A174852 A341517 * A244611 A189289 A270885
KEYWORD
mult,nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 29 2001
STATUS
approved