OFFSET
1,2
COMMENTS
Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) < n^0.715. - Charles R Greathouse IV, May 21 2014
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
M. A. Bennett, M. Filaseta, and O. Trifonov, On the factorization of consecutive integers, J. Reine Angew. Math. 629 (2009), pp. 171-200.
Jon Maiga, Computer-generated formulas for A065331, Sequence Machine.
FORMULA
a(n) = n / A065330(n).
Multiplicative with a(2^e)=2^e, a(3^e)=3^e, a(p^e)=1, p>3. - Vladeta Jovovic, Nov 05 2001
Dirichlet g.f.: zeta(s)*(1-2^(-s))*(1-3^(-s))/ ( (1-2^(1-s))*(1-3^(1-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = gcd(n,6^n). - Stanislav Sykora, Feb 08 2016
Sum_{k=1..n} a(k) ~ n*(log(n)^2 + (2*gamma + 3*log(2) + 2*log(3) - 2)*log(n) + (2 + log(2)^2/6 + 3*log(2)*(log(3) - 1) - 2*log(3) + log(3)^2/6 + gamma*(3*log(2) + 2*log(3) - 2) - 2*sg1)) / (6*log(2)*log(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Sep 19 2020
MAPLE
seq(2^padic:-ordp(n, 2)*3^padic:-ordp(n, 3), n=1..100); # Robert Israel, Feb 08 2016
MATHEMATICA
Table[GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
a[n_] := Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
PROG
(PARI) a(n)=3^valuation(n, 3)<<valuation(n, 2) \\ Charles R Greathouse IV, Aug 21 2011
(PARI) a(n)=gcd(n, 6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
(PARI) a(n)=gcd(6^logint(n, 2), n) \\ 'optimized' version of Sykora's script; Charles R Greathouse IV, Jul 23 2024
(Haskell)
a065331 = f 2 1 where
f p y x | r == 0 = f p (y * p) x'
| otherwise = if p == 2 then f 3 y x else y
where (x', r) = divMod x p
-- Reinhard Zumkeller, Nov 19 2015
(Magma) [Gcd(n, 6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
CROSSREFS
Cf. A126760 (ordinal transform of this sequence, from its term a(1) = 1 onward).
KEYWORD
mult,nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 29 2001
STATUS
approved