login
A195989
Quotient of denominators of (BernoulliB(2n)/n) and BernoulliB(2n).
3
1, 2, 3, 4, 1, 6, 1, 8, 9, 10, 1, 12, 1, 2, 3, 16, 1, 18, 1, 20, 21, 2, 1, 24, 1, 2, 27, 4, 1, 30, 1, 32, 3, 2, 1, 36, 1, 2, 3, 40, 1, 42, 1, 4, 9, 2, 1, 48, 1, 50, 3, 4, 1, 54, 11, 8, 3, 2, 1, 60, 1, 2, 63, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 81, 2, 1, 84
OFFSET
1,2
COMMENTS
The fixed points (entries equal to their index) are 1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 21, 24, 27, 30, 32, 36, 40, 42,... See A193267.
Are the indices of the 1's, that is 1, 5, 7, 11, 13,... , the sequence A069040 (checked to be true for their first 700 entries)? This provides another link between the Bernoulli numbers.
a(10*k) = 10, 20, 30, 40, 50, 60, 10, 70, 80, 90, 100,... for k= 1, 2, 3,....
LINKS
FORMULA
a(n) = A193267(2*n)/2 = A036283(n) / A002445(n).
a(n) = n/A300711(n). - Peter Luschny, Mar 12 2018
2a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 divides 2n. - Peter Luschny, Mar 12 2018
EXAMPLE
a(1) = 6/6 =1, a(2) = 60/30 =2, a(3) =126/42 =3, a(4) = 120/30 =4, a(5) = 66/66 =1.
MAPLE
A195989 := proc(n)
q1 := denom(bernoulli(2*n)/n) ;
q2 := denom(bernoulli(2*n)) ;
q1/q2 ;
end proc: # R. J. Mathar, Jan 06 2013
# Alternatively, without Bernoulli numbers:
A195989 := proc(n) local P, F, f, divides; divides := (a, b) -> is(irem(b, a) = 0):
P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
P := P*f[1]^f[2] fi od; n/P end: seq(A195989(n), n=1..84); # Peter Luschny, Mar 12 2018
MATHEMATICA
a[n_] := Denominator[ BernoulliB[2*n]/n] / Denominator[ BernoulliB[2*n]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jan 04 2013 *)
PROG
(PARI) a(n) = my(b=bernfrac(2*n)); denominator(b/n)/denominator(b); \\ Michel Marcus, Mar 12 2018
(Magma) [Denominator(Bernoulli(2*n)/n)/Denominator(Bernoulli(2*n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
CROSSREFS
Sequence in context: A366283 A065331 A066262 * A174715 A069817 A071439
KEYWORD
nonn
AUTHOR
Paul Curtz, Dec 21 2012
STATUS
approved