login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193267
The number 1 alternating with the numbers A006953/A002445 (which are integers).
5
1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 20, 1, 2, 1, 24, 1, 2, 1, 4, 1, 6, 1, 32, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 8, 1, 2, 1, 60, 1, 2, 1, 64, 1, 6, 1, 4, 1, 2, 1, 72, 1, 2, 1, 4, 1, 6, 1, 80, 1, 2, 1, 84, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 96, 1, 2, 1, 100
OFFSET
1,2
COMMENTS
a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing n and p-1 divides n. - Peter Luschny, Mar 12 2018
LINKS
FORMULA
a(n+1) = A185633(n+1)/A027760(n+1).
a(n+1) = c(n+2)/c(n+1).
MAPLE
with(numtheory); a := proc(n) divisors(n); map(i->i+1, %); select(isprime, %);
mul(k^padic[ordp](n, k), k=%) end: seq(a(n), n=1..100); # Peter Luschny, Mar 12 2018
# Alternatively:
A193267 := proc(n) local P, F, f, divides; divides := (a, b) -> is(irem(b, a) = 0):
P := 1; F := ifactors(n)[2]; for f in F do if divides(f[1]-1, n) then
P := P*f[1]^f[2] fi od; P end: seq(A193267(n), n=1..100); # Peter Luschny, Mar 12 2018
MATHEMATICA
a[n_] := If[OddQ[n], 1, Denominator[ BernoulliB[n]/n ] / Denominator[ BernoulliB[n]] ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 21 2012 *)
PROG
(Magma) [Denominator(Bernoulli(n)/n)/Denominator(Bernoulli(n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
(Julia)
using Nemo
function A193267(n) P = 1
for (p, e) in factor(ZZ(n))
divisible(ZZ(n), p - 1) && (P *= p^e) end
P end
[A193267(n) for n in 1:100] |> println # Peter Luschny, Mar 12 2018
CROSSREFS
Sequence in context: A329379 A328479 A340346 * A327832 A083258 A083259
KEYWORD
nonn
AUTHOR
Paul Curtz, Dec 20 2012
STATUS
approved