login
A071521
Number of 3-smooth numbers <= n.
15
1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
OFFSET
1,2
COMMENTS
A 3-smooth number is a number of the form 2^x * 3^y where x >= 0 and y >= 0.
REFERENCES
Bruce C. Berndt and Robert A. Rankin, "Ramanujan : letters and commentary", History of Mathematics Volume 9, AMS-LMS, p. 23, p. 35.
G. H. Hardy, Ramanujan: Twelve lectures on subjects suggested by his life and work, AMS Chelsea Pub., 1999, pages 67-82.
LINKS
Thierry Bousch, La Tour de Stockmeyer, Séminaire Lotharingien de Combinatoire 77 (2017), Article B77d.
M. Haussman and H. N. Shapiro, On Ramanujan right triangle conjecture, Comm. Pure Appl. Math. 42 (1989), 885-889.
A. M. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 77-98; 250-251.
Raphael Schumacher, The Formulas for the Distribution of the 3-Smooth, 5-Smooth, 7-Smooth and all other Smooth Numbers, arXiv preprint arXiv:1608.06928 [math.NT], 2016.
FORMULA
a(n) = Card{ k | A003586(k) <= n }. Asymptotically: let a=1/(2*log(2)*log(3)), b=sqrt(6), then from Ramanujan a(n) ~ a*log(2*n)*log(3*n) or equivalently a(n) ~ a*log(b*n)^2.
A022331(n) = a(A000079(n)); A022330(n) = a(A000244(n)). - Reinhard Zumkeller, May 09 2006
a(n) = Sum_{k=1..n} mu(6k)*floor(n/k). - Benoit Cloitre, Jun 14 2007
a(n) = Sum_{k=1..n} (floor(6^k/k)-floor((6^k-1)/k)). - Anthony Browne, May 19 2016
From Ridouane Oudra, Jul 17 2020: (Start)
a(n) = Sum_{i=0..floor(log_2(n))} (floor(log_3(n/2^i)) + 1).
a(n) = Sum_{i=0..floor(log_3(n))} (floor(log_2(n/3^i)) + 1). (End)
A322026(n) = a(A065331(n)). - Antti Karttunen, Sep 08 2024
MAPLE
N:= 10000: # to get a(1) to a(N)
V:= Vector(N):
for y from 0 to floor(log[3](N)) do
for x from 0 to ilog2(N/3^y) do
V[2^x*3^y]:= 1
od od:
convert(map(round, Statistics:-CumulativeSum(V)), list); # Robert Israel, Dec 16 2014
MATHEMATICA
a[n_] := Sum[ MoebiusMu[6k]*Floor[n/k], {k, 1, n}]; Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Oct 11 2011, after Benoit Cloitre *)
f[n_] := Sum[Floor@Log[3, n/2^i] + 1, {i, 0, Log[2, n]}]; Array[f, 75] (* faster, or *)
f[n_] := Sum[Floor@Log[2, n/3^i] + 1, {i, 0, Log[3, n]}]; Array[f, 75] (* Robert G. Wilson v, Aug 18 2012 *)
Accumulate[Table[If[Max[FactorInteger[n][[All, 1]]]<4, 1, 0], {n, 80}]] (* Harvey P. Dale, Jan 11 2017 *)
PROG
(PARI) for(n=1, 100, print1(sum(k=1, n, if(sum(i=3, n, if(k%prime(i), 0, 1)), 0, 1)), ", "))
(PARI) a(n)=sum(k=1, n, moebius(2*3*k)*floor(n/k)) \\ Benoit Cloitre, Jun 14 2007
(PARI) a(n)=my(t=1/3); sum(k=0, logint(n, 3), t*=3; logint(n\t, 2)+1) \\ Charles R Greathouse IV, Jan 08 2018
(Haskell)
a071521 n = length $ takeWhile (<= n) a003586_list
-- Reinhard Zumkeller, Aug 14 2011
(Python)
from sympy import integer_log
def A071521(n): return sum((n//3**i).bit_length() for i in range(integer_log(n, 3)[0]+1)) # Chai Wah Wu, Sep 15 2024
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Benoit Cloitre, Jun 02 2002
STATUS
approved